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ABSTRACT

In our project, we create a fraudulent checker tool to detect fake job postings using NLP (Natural
Language Processing) and ML approaches (Random Forest Classifiers, Logistic Regression, Support
Vector Machines, and XGBoost Classifiers). These approaches will be compared and then combined
into an ensemble model which is used for our job detector. The goal is to predict actual or fake job
prediction outcomes with the maximum accuracy using machine learning-based techniques. The dataset
will be analysed using the Supervised Machine Learning Technique (SMLT) to capture numerous details
such as variable identification, missing value treatments, and data validation analyses. The complete
dataset will be cleaned/prepared, and data visualisation will be performed. The ensemble model is
created at the end using ML Algorithms like XGBoost, SVM, Logistic Regression, and Random Forest
Classifier by choosing 4 of the best contributing features. The model produced at the end will be

implemented in a Flask application for demonstration.
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CHAPTER 1

INTRODUCTION

Many companies, whether well-known or new, prefer to post job applications online. Since it is fast
and can easily reach a wide variety of capable applicants. But because of this, lots of scams also arise.
Identifying a fake job application depends on many factors. Sometimes scams can be easily identified
if the employer asks for money from the employee. But there are also tricky scams that will make the
user give their details which are more dangerous than losing money. Since anyone can view these job

postings, freshers who are gullible might fall for these scams easily.

So, to prevent this, the Machine Learning approach is used to classify, whether the job application is
real or fake. Using our ensemble model, we can take a lot of factors into consideration. The primary
factor is the description of the job. The other factors include company profile, benefits, requirements,

etc. With these factors, we can decipher whether the job is real or fake.

1.1 PROBLEM STATEMENT

Work-from-home jobs have long been a target for scammers, with a 300 percent surge in hiring scams
prior to 2017, and another increase in frauds until 2020. They have, however, become even more
vulnerable targets in the aftermath of the COVID-19 issue. Because of the coronavirus outbreak, many
people have lost their jobs. Finding a new work can be challenging, especially because many non-
essential firms throughout the world have had to cut hours or reduce staff, resulting in mass layoffs.

Scammers are acutely aware of the fact that some job searchers are in severe need of cash.

In recruitment, there is the good, the bad, and the ugly. From fraudsters to copy-paste connoisseurs,
some of them are even accountable for tarnishing the reputation of "legitimate” recruiters. Scams
involving job searches and recruiting are not uncommon on LinkedIn. If you receive a communication
from someone expressing interest in hiring you for a position at their organization, it's most likely a

real recruiter contacting you about a legitimate job. However, there is always the chance that the
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recruitment is a hoax. Scammers use LinkedIn to reach out to targets, knowing you’re more likely to
fall for the scam just because the message is coming through a reputed platform like Linkedin.
However, to be on the safer side and avoid falling prey to scams, it is advised that we treat every
unsolicited offer as a job scam regardless of where it comes from and how well known the platform
happens to be.

Some recruitment agencies may also use strategies that defy work ethic, like advertising phantom roles
to make it seem more appropriate on the outside when they already have a new employee in mind.
Some companies collect CVs to analyze the market while some use that as a disguise to operate dubious
businesses like illegally selling the data they collect. Pyramid marketing is illegal and has no basis in
real commerce. For someone to make money with a pyramid marketing scheme, someone else must

lose funds.

Verifiable Information definitely plays an important role in determining the authenticity of
the job posting. You may have believed you landed your perfect job, but after closer
inspection, you can't locate any information about the organization. If you cannot confirm
contact information, location, website, or employees, then you may have fallen prey to
fraudulent recruitment. In this day and age, genuine businesses will have an internet presence
as well as some social media engagement and the lack thereof could also signify that they

may not be authentic.

Therefore, to prevent such scams, the Machine Learning approach is used to classify whether the
selected job application is real or fake. Using our ensemble model, we can consider several factors.
The primary factor is the description of the job. The other factors include company profile, benefits,

requirements, etc. With these factors, we can decipher whether the job posting is real or fake.

1.2 DATA SCIENCE AND SCIENTISTS

Data science is a discipline that employs scientific approaches, algorithms, processes, and systems to

extract information from many types of unstructured and structured data, as well as to apply that

knowledge to a myriad of different areas. As an alternative to computer science, Peter Naur suggested

data science. The first conference to promote data science was organised by the International

Federation of Classification. The definition, however, was in flux. D.J. Patil and Jeff Hammerbacher
2



invented the term "data science"” in 2008. It has become one of the most popular occupations in the
sector in less than a decade. Data science is the study of deriving usable insights from data by
integrating topic knowledge, computer skills, and an understanding of arithmetic and statistics [1].
Data science is a mix of arithmetic, business skills, tools, algorithms, and a variety of machine learning
approaches that aid in the discovery of hidden insights or patterns in raw data that may be utilised to
make critical business decisions.Data scientists explore and analyze which questions must be answered
and where relevant data might be found. They are well-versed in business and analytical abilities, as
well as the ability to mine, clean, and display data. Data scientists are employed by businesses to

collect, organize, and evaluate enormous volumes of unstructured data.

1.3 ARTIFICIAL INTELLIGENCE

Any computer or program that mimics human intelligence is known as artificial intelligence (Al). By
learning in the same way that humans do, Al tries to emulate the human brain. Al improves and learns
problem-solving skills. Machine intelligence, as opposed to natural intelligence demonstrated by living
beings, is referred to as Al. The topic is described as the study of "intelligent agents,” which are any
systems that sense their environment and take actions to enhance their chances of attaining their goals,
according to leading Al textbooks. Al experts, on the other hand, contested this definition, which uses
the word "artificial intelligence” to refer to robots that mimic "cognitive™ functions performed by

humans, such as "learning” and "problem-solving."”

Al is used in intelligent search engines like Google, recommendation systems like Netflix, self-driving
vehicles like Tesla, speech recognition like Siri and Alexa, and strategic video game systems like chess
at the highest levels. When robots become more capable, jobs formerly thought to require "intellectual
aptitude™ are removed from the Al equation. Take, for example, optical character recognition. Artificial
intelligence has gone through a series of ups and downs since its inception as an academic research

project in 1956 [2], with new approaches, success, and renewed funding.

Throughout its history, Al research has investigated and rejected a wide range of approaches, including

brain mimicry, modelling human problem-solving abilities, formal logic, enormous information

libraries, and animal behavior mimicry. In the early decades of the twenty-first century, highly

quantitative statistical machine learning dominated the field, and this approach has shown to be

extremely effective, assisting in the resolution of many difficult challenges in industry and academia.
3



The numerous subfields of Al research are centred on specific goals and methodologies. Logic-based
information processing, data scheduling, model training, natural language processing (NLP), sensing,
and the capacity to move and manipulate objects are all traditional Al research aims. One of the
program's long-term goals is general intelligence (the capacity to solve any issue). Al researchers
utilise search and optimization algorithms, logic programming, convolutional neural networks, and
statistics, probability, and economics-based approaches to address these issues. Computer science,

linguistics, psychology, and a variety of other subjects are all used in Al.

As the hype around Al has grown, suppliers have been scrambling to show how Al is integrated into
their goods and services. When we talk about Al, we're talking about a single component called
machine learning. For constructing and training machine learning algorithms, Al requires a foundation
of specialized hardware and software. Although no single scripting language is connected with
artificial intelligence, Python, R, and Java stand out. Al systems frequently consume large volumes of
labelled training data, evaluate, and recognize patterns in the data, and then use these structures to

predict future states.

A chatbot given samples of text dialogues may learn to generate lifelike discussions with people by
studying millions of cases, while an image recognition computer may learn to recognize and describe
things in images by evaluating millions of instances. Al typically includes three processes known as

learning, which refers to the human brain, reasoning, and self-correction.

1.4 LEARNING PROCESS

Learning processes are an aspect of Al programming that is involved with receiving data and
developing rules for converting it into valuable knowledge for the process. Algorithms are rules that

provide computer equipment with stage-by-stage instructions for executing a certain activity.

1.5 REASONING PROCESS

Reasoning processes are an aspect of Al programming that is involved with determining the optimum
4



method to achieve a given goal.

1.6 SELF-CORRECTION PROCESS

This element of Al programming aims to fine-tune algorithms on a frequent basis in order to ensure

that they give the highest level of accuracy.

1.7 NATURAL LANGUAGE PROCESSING(NLP)

Machines can read and comprehend human language thanks to natural language processing (NLP).
Natural language is a user interface that is generated directly from human-written sources, such as
news agency articles, and it is theoretically possible with an adequate natural language processing
system. Web scraping, text mining, question answering, and machine translation are all examples of
simple natural language processing applications. To generate syntactic representations of text, some
recent methodologies use word co-occurrence frequencies. "Term spotting™ search algorithms are well-
known and adaptable, but they are also erroneous; for example, a search for "dog" may only return
papers that contain the keyword "dog," but articles containing the keyword "poodle™ may be

overlooked.

Lexical affinity approaches assess the emotional content of a material by searching for keywords such
as "accident.”" [3] In many circumstances, modern statistical NLP algorithms may incorporate all of
these tactics, as well as others, and get correct answers at the page or paragraph level. Beyond semantic
NLP, the ultimate goal of "narrative” NLP is to contain a thorough understanding the basics of intuitive
thinking. Deep learning systems built on transformers may also be able to generate coherent text by
2019.

1.8 MACHINE LEARNING

Machine learning is a method of projecting the future based on historical data. Machine learning (ML)
is an Al approach that allows machines to understand and learn without having to be explicitly
programmed. Machine learning is concerned with the production of data-adaptive computer programs,

as well as the principles of machine learning, such as the construction of a simple learning algorithm

5



in Python. In the training and prediction phase, specialized algorithms are used. It sends the training

sets to an algorithm, which then uses the training data to create predictions using new test data.

Machine learning can be broken down into three categories. Learning can be classified into three
categories: supervised, unsupervised, and reinforced. To learn data that must first be tagged by a
person, a supervised learning algorithm is given both the inputs and the accompanying labelling. In
unsupervised learning, there are no labels. The deep learning model was given access to it. This method
must determine how the data in the input is clustered. Finally, reinforcement learning interacts
dynamically with its environment and receives positive or negative feedback in order to improve its
performance. Data scientists use a number of machine learning algorithms to identify relationships in

Python that lead to valuable insights.

Based on how they "learn™ about data to make predictions, these algorithms can be classified into two
categories: supervised and unsupervised learning. Classification is a strategy for guessing the
classification of supplied data sets. Classification predictive modelling is the process of predicting a
map function between input variables (X) and different output variables (y).

y=f(X)
Where y is the desired output and X is the input variable. We map the input and output in a nonlinear

fashion.

In statistics and machine learning, classification is an important method in which a computer software
learns from data input and then uses that learning to categorize new observations. This data collection
might be classified as bi-class (for example, determining whether the mail is spam or non-spam)
Examples include voice recognition, fingerprint recognition, identity verification, document
categorization, as well as other classification issues. [4] The great majority of practical machine
learning applications make use of Supervised Machine Learning. The objective is to calculate the
mapping function sufficiently to foresee the target value (y) for new input data (X). Supervised
machine learning approaches include multiple regression models, multi-class classification, SVMs and
Decision Trees. The data required for training the algorithms for supervised learning must be labelled

with correct answers before testing the model.

Problems with classification are a subclass of supervised learning algorithms. The goal of this

challenge is to develop a basic model that predicts the value of dependent variable attribute based
6



solely on the attribute variables. The main difference between the two tasks is that in categorical
classification, the dependent feature is numerical. A classification model attempts to infer something
from observable data. The classifier would attempt to anticipate the results of one or more outcomes
depending on the values of one or more inputs. The problem is referred to as a classification problem

when the outcome is a categorization, such as "red" or "blue."”

1.9 EXISTING SYSTEMS

Before choosing out model, we have researched about existing systems. This uses the different
methods, but the end goals are similar. Upon further research we have found out why these methods
are lacking.

1.9.1 NAIVE BAYES CLASSIFIER

Naive Bayes is a technique for classifier construction. For training such classifiers, there is no specific
algorithm, but rather a combination of algorithms. Naive Bayes Classifier assumes all values of one
feature are independent of values of other features. It is often used to build machine learning models
that can make quick predictions. [5] A probabilistic classifier predicts based on the likelihood of an
item. Assumes that all predictors are independent, which is seldom the case in real life. It is confronted

with the zero-frequency issue.

For example, each feature is considered to contribute independently to the probability that the
vegetable is a carrot, regardless of any possible correlations between the color, shape, and height
features. In practical applications of Naive Bayes Classifier, they use Maximum Likelihood, it’s the
probability of maximum chances of the entity being a class. An advantage of this is that it requires
small training data for classification. By looping a supervised learning algorithm, you can create a
semi-supervised training algorithm that can learn from both labeled and unlabeled data.

Examples of Naive Bayes Classifier:
Person Classification - If a person is male or female depending on features like height, weight, and
foot size.

Document classification - Classifying documents by their content. Like e-mail spam detection.



1.9.2 ADABOOST CLASSIFIER

AdaBoost is a boosting technique. It is an ensemble model with 2 steps. First, a classifier is fit to the
dataset. It then fits the same classifier again to the dataset but substantially alters the weight of
incorrectly classified instances such that subsequent classifiers focus on complicated situations. To
transform a bad classifier that is just marginally better than a random guess into an excellent classifier.
Adaptive Boosting is so named because the weights are redistributed to each instance, with bigger
weights applied to incorrectly assigned instances. [6] A high-quality dataset is required. Before
implementing an Adaboost algorithm, it is necessary to prevent noisy data and outliers. It is easier to
use with less need for tweaking parameters but AdaBoost is not prone to overfitting. Adaboost
technique learns progressively, it is important to note that you have quality data. It is extremely

sensitive to Noisy data so caution must be taken when using AdaBoost.

1.9.3 K-NEAREST NEIGHBHOURS CLASSIFIER
A Supervised Machine Learning approach is used in the K-Nearest Neighbor algorithm. KNN

maintains all data and compares it to newer data to determine the degree of similarity. It assumes that
the input data and cases in the dataset are comparable and, as a result, places the new instance inside a
category that seems to be closest to the existing categories. [7] KNN needs a massive amount of
memory to store all the data. A supervised machine learning algorithm that can deal with both
classification and regression problems. To resample datasets and fill in missing values. It needs a large
amount of memory in order to store all of the training data.

Example:

Predicting animals - If features of animals are labelled. It compares the input data with the data set,

then it gives the output based upon the calculation of the K value and nearest neighbors.

1.9.4 MULTI-LAYER PERCEPTRON CLASSIFIER

MLP is a class of ANN (Atrtificial neural network). MLP has at least 3 basic layers, Input, Output, and
hidden layer. It uses a supervised learning technique named backpropagation for training the data. It
has multiple layers and non-linear activation, so it is different from linear perceptrons. MLP contains
many perceptrons that are arranged like layers. [8] Perceptrons are like a special scenario of artificial
neurons that use a certain threshold activation function. MLP was popular in finding applications like
speech and image recognition, machine translation, etc.

8



1.9.5 DECISION TREE CLASSIFIER

The decision tree has nodes that specify an attribute, and each branch denotes the one in many values
for that attribute. Leaf represents the class labels. The algorithm is that the classification starts at the
root node and each node splits into two or more subtrees according to a condition, at the end a new
node is created. [9] This process carries on till all data is classified. It works in a top-down manner.
There are lots of possibilities to measure the split of the subtrees. When the user is missing one or two

inputs, the model is capable of identifying whether the job posting is fake or real.



CHAPTER 2

LITERATURE REVIEW

A review of the literature is a piece of writing that attempts to summarizes the most essential
components of current understanding of methodological procedures as they relate to a specific topic.
It is a secondary source that discusses published information in a certain subject area, as well as
expertise in that subject field during a specified time period. Its ultimate goal is to keep the reader up
to date on the reviewed literature, and it also serves as a foundation for other objectives, such as future
studies that may be required in the field. It may just be a list of references that appears before a
proposed investigation. It usually follows a pattern and includes summary as well as synthesis. We
write a summary to help us understand a long text more quickly while yet keeping the meaning. It
could provide a new perspective on existing material, combine new and old viewpoints, or track the
field's intellectual growth, including major debates. Depending on the context, a review of the literature

may examine the materials and direct the audience to the most current or relevant ones.

2.1 LITERATURE REVIEW 1

Title: Predicting of Job Failure in Compute Cloud Based on Online Extreme Learning
Machine: A Comparative Study [37]

Author: C. Liu, J. Han, Y. Shang, C. Liu, B. Cheng, and J. Chen

Year: 2017

Performs online job failure prediction on Google datasets to improve online prediction models and
resource utilization by comparing various prediction models. OS-ELM is used to predict job status by
collecting real-time data according to the sequence of arrival. It reduces storage space and resources
used in the cloud by intelligently identifying job failure. Due to its fast-learning speed and good
generalization it takes very little time to update the model while providing higher prediction accuracy
and better false-negative performance when compared to other existing models. The training and
testing time for SVM and ELM models are much shorter than OS-ELM’s and with better offline
prediction performance. Accuracy, precision, and false-negative rate with prediction accuracy of 93%

and updates the model in 0.01s
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They are analyzing the different states a task could end up at. For example, it could be successful and
go to finished state, the job could be killed, or evicted or the job could fail and resubmitted. There are
lots of jobs are assigned to a particular system, and the system schedules the jobs according to its
priority. They analyzed the status of jobs, from their research they have found that about 60% of the
jobs are successful, and 40% are either evicted, failed, or gets killed, thus leading to job termination.
ELM (Extreme Learning Machine) is a learning algorithm which can solve single hidden layer neural
network. How ELM works is that it inputs random weights and offset and gets the output in output
layer.

OS-ELM is a modification of ELM which has faster learning speed. Its an online incremental
algorithm, it can deal with the sequential arrival of data. Unlike ELM, OS-ELM does not reuse learned
data for updating the model. They are gathering the required data from google clusters [38]. The logs
of job submission are gathered in real-time in cloud. The features are extracted from the pre-processed
data.

The data from cloud are cleaned if:

The job didn’t get executed after being submitted for 20 minutes.

The job hasn’t been completed at the end of trace record.

The job finished before it has been scheduled.

Data went missing.

Job started before traces were recorded.

With the static characteristics the jobs are extracted in data preprocess, and this used as a feature vector.
With the extracted features, the data is split into two parts, test data and training data in the ratio 1:3.
The training data is used to train the model to predict the status of the recent jobs. If the model predicts
that the job will be successful, then the job continues. If the model predicts it to be in termination state,
the job terminates and resubmitted, waiting to be scheduled. OS-ELM model adapts the strategy of
fast learning in predicting and model updating to provide low cost with best performance.

The method that is used to predict the state has two phases: initialization phase and the sequential
learning phase [39, 40].

SVM is usually used for small-scale data for classification problems [41, 42]. SVM maps the problem

to high dimensional space. The advantage of SVM is that global optimization, strong generalization
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ability and small sample [43]. OS-SVM is an advanced version of SVM, which does online rapid
incremental learning [44, 45]. This works in offline phase. When training the model, they have
discovered that ELM is faster when compared to SVM and time taken for ELM training and testing is
100 times shorter when compared to OS-ELM. From this they can draw a conclusion that offline
models work better than online models since offline uses large samples at a time to build the model,
where online models use small samples at first and perform the model update training as data samples

reach. However, online models time performance is better when compared to offline models.

From the testing and training they have observed that OS-ELM model is suitable for online predictions.

The reasons are:

i) SVM and ELM are offline models which requires more storage space since the model needs to
train from existing samples.

i) OSELM has an advantage of learning faster, updating the model takes about 0.01s, where OS-
SVM takes about 22.04s for updating.

iii) OS-ELM model is more stable when compared to OS-SVM because while updating the model OS-
SVM needs to retain the samples that violated the conditions for next iteration, wherein for OS-
ELM the hidden-layer weights and parameters are randomly chosen, and feed forward neural
network is minimized.

Thus, in conclusion, time performance and prediction of OS-ELM is superior to other models. It

can reduce the storage space by identifying job failure and reduce the resource wastage in cloud.

2.2 LITERATURE REVIEW 2

Title: Deep Representation Learning with Full Center Loss for Credit Card Fraud Detection
[10]

Author: Z. Li, G. Liu, and C. Jiang

Year: 2020

Focuses on obtaining deep feature representations of legal and fraud transactions from the aspect of
the loss function of a deep neural network. Uses Full Center Loss and Angle Center Loss on two big
datasets of credit card transactions: one public Kaggle dataset and the other a private dataset. FCL
considers both distances and angles among features and can comprehensively supervise deep

representation learning. Feature engineering is used to extract informative features of transaction
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behaviors and ACL is an improved SL used here. Though this model ensures stability it does not
address the concept of drift problems. The performance metrics used to evaluate the model here are

accuracy, precision, and recall and achieved an accuracy of 82.2%

2.3 LITERATURE REVIEW 3

Title: Fake Job Prediction using Sequential Network [11]
Author: D. Ranparia, S. Kumari and A. Sahani
Year: 2020

Uses Natural Language Processing to analyze sentiments and patterns in job postings on LinkedIn
using Beautiful Soup. Trained the model as a Sequential Neural Network using the GloVe algorithm
and uses the EMS CAD dataset. The Global Vector Model Algorithm used is very realistic and can
determine if the job is real or fake just by extracting the job description and feeding it into the model.
Sentiment analysis can be improved by also implementing Word2Vec along with the GloVe algorithm.
The model was compiled for 10 epochs with a batch size of 64 and achieved 97.58% validation

accuracy.

2.4 LITERATURE REVIEW 4

Title: Automatic Detection of Online Recruitment Frauds: Characteristics, Methods, and a
Public Dataset [12]

Author: Videos, Sokratis, Constantinos Kolias, Georgios Kambourakis, and Leman Akoglu
Year: 2017

Analyzes all possible aspects of employment scams by exploring EMS CAD dataset that contains real-
life legitimate and fraudulent job recruitment ads. Trains 6 popular WEKA classifiers using a bag of
words modelling and evaluates their performances to generate a ruleset which is then converted into
binary feature vectors and tested against the same WEKA classifiers. The use of various analyses helps
improve automated anti-scam solutions by ATS to train classifiers and gain a deeper knowledge of the
problem’s characteristics. The ruleset does not focus on user behavior, company & network data, and
user-content-IP collision patterns and lacks graph modelling. Empirical Analysis, stop word filtering
(excluding articles and prepositions) and used k-fold cross-validation strategy to evaluate the model.
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The data set they are using is EMSCAD. For the data cleaning they take only the key words while
removing the stop words [13] like “the, an, with, etc....”. after this they have used another bow (bag
of words) modelling to train WEKA classifiers [14]. For training and testing they take features named
as job description, company profile, requirements, and benefits. After cleaning of data is done, they
use machine learning algorithm named as ZeroR, OneR, Naives Bayes, J48 decision trees, random

forest, and logistic regression. Then they compare the results.

With these rules they separate the dataset. This new model can scale up large dataset as it requires less
storage. The model is again tested with the six classifiers and observed the results. The data was
separated into training and test data using k-fold cross validation technique. In this new model almost,
all classifiers could do better performance when compared to bow. All classifiers are increased in
accuracy by 2%-13%. Only random forest showed decline of 0.5%. now they have chosen random
forest classifier as their test. They have concluded mentioning that features that are related to company
like short company profile or lack of company logo and profile are very effective. On the contrary,

legitimate jobs are found with short descriptions.

As the final step they have tested the random forest classifier that has been trained on empirical ruleset
against the unbalanced 17,880 data. The model showed an accuracy of 89.5%. the precision and recall
score for non-fraudulent was 0.986 and 0.903 accordingly. But fraudulent has 0.282 and 0.751. Since
the dataset is highly imbalanced, these results are to be expected. From observations they have
concluded that with balanced dataset the model can produce an accuracy up to 90%. So according to
the results, one fraudulent could be marked as non-fraudulent out of 10 fraudulent.

Their future goal is to employ graph modeling and explore connections between fraudulent job ads,
companies, and users. They would also like to make their employment fraudulent tool to be of

commercial use.

2.5 LITERATURE REVIEW 5

Title: Machine Learning and Job Posting Classification: A Comparative Study [15]
Author: Ibrahim M. Nasser!l and Amjad H. Alzaanin2

Year: 2020
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In this paper, they have taken a text classification problem and compared various machine learning
algorithms like SVM, Multinomial Naive Bayes, Decision Tree, K Nearest Neighbors, and Random
Forest. The data set they sued contains real and fake jobs. They cleaned the dataset and pre-processed
the text using TF-1DF for extracting the features. They split this data into two parts, train data and test
data. Evaluation metrics used are precision, recall, f-measure, and accuracy. For each classifier, results
were summarized and compared with others. The reason they are doing this research is to measure the
performance of most used ML techniques on a text classification problem and prove a comparison

between them.

The theory with Multinomial Naive Bayes is that to predict the probability of an event based on
previous knowledge [16]. The Naive Bayes classifier proved their efficiency in text classification
problems [17]. This works on solid independent assumptions; this means one assumption does not
affect the others. Given n assumptions, this model makes 2n! independent assumptions. This also paves
way on understanding each assumption separately since they are not dependent on each other [18].
There are two event models: the multi-variate Bernoulli, and the Multinomial Naive Bayes (MNB).

They are working on MNB. MNB gets the word frequency in documents [19].

Support Vector Machine (SVM) is a learning model by Vapnik. It can learn functions from labelled
vectors [20]. The job of SVM is to find the optimal hyperplane by comparing the nearest two different

classes data points, so it can generalize the training pattern [21].

Decision Tree Classifier (DT) is commonly used ML for classification and predictions. DT works with
nodes and leaf. It has a tree structure. The top node is the root node, every other node is either a decision
node or a leaf node. Decision node is the one which sets rules or tests are carried out on an attribute
and classifies the value accordingly. While lead node just mentions the class of data that is it is
classified into. Decision node can classify values into leaf node, or it can also have sub-tree. DT goes

from top to bottom, starts at root node and works it way towards the leaf nodes [22].

K- Nearest Neighbors (KNN) is used mainly for its simplicity and efficiency [23-25]. It finds the
Euclidean distance and assesses individual features. KNN predicts depending on a number that
represents the nearest training example. It stores all the training samples and chooses the k nearest

sample from the classified vectors and determines the class of the new data.
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Random Forest (RF) is an ensemble of Decision Trees. So each DT provides one output and votes are
conducted, the class with most votes becomes the prediction of RT [26]. To create a RF one has to
create a bootstrapped dataset that is the same size as the original. To create it we randomly select data
from original dataset. Few instances are missed from original dataset, these are called Out Of Bad
Dataset (OOB), so each bootstrapped dataset has its own OOB. Then DT is created. The difference is
that we choose only one feature and not the entire sample. This is the reason why RF is more effective
than individual DT. In test phase, we take the OOB dataset and check if the predicted class is correct

or not.

They have used Google Collaboratory to code. The data was uploaded and pre-processed. Then feature
extraction is done. With this clean data we split it into train data (70%) and test data (30%). The dataset
they are using is from Kaggle [27]. This has about 18K entries and 17 attributes and one class with

binary values.

Now the features are getting extracted, this step is essential because its suitable for learning algorithms
[28]. Converting text data to vector. Vector is a numeric value corresponding to each term appearing
in a text [29]. They are using TF-IDF to convert text to vectors [30]. It takes the most frequent words
in the document and use them as features vector. TF-IDF gives higher weight to important terms from
the document. Now the data is converted to Term Vector Model (TVM).

The evaluation metrics they are using are accuracy, true positive rate, precision, recall, and F1 score.
After they have trained the models, they constructed a confusion matrix and evaluation matrix. It is
observed that Random Forest has highest accuracy of 98%. The second highest are SVM, DT, KNN
with an accuracy of 97% and highest F1-score of 99.0. In terms of highest recall, its DT followed by
RF and KNN. Meanwhile highest precision is achieved by MNB, SVM, and RF. Although MNB has
lowest accuracy, it might be possible because of the state of nature stated in [31]. Finally, they have

concluded that, for text classification problem Random Forest Classifier is best.

2.6 LITERATURE REVIEW 6

Title: Fake Job Recruitment Detection Using Machine Learning Approach [32]
Author: Samir Bandyopadhyay, Shawni Dutta
Year: 2020
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They have used machine learning classification to avoid fake post for jobs in internet. The classifiers
are tested and compared with each other, and they identify the best employment scam detection model.
They can detect fake job posting in enormous number of job posts. They have used mainly two
classifiers — single classifier and ensemble classifiers. With experiments its found that ensemble model
is better at detecting scams when compared to single classifiers.

S

The classifier identifies fake job postings from a large set of advertisements and alerts the user. They
consider a supervised machine learning to get this job done. The job of a classifier is to map the input
data with target class while considering training data. The classifiers are broadly categorized to single

classifier-based prediction and ensemble classifier-based prediction.

Single classifier-based prediction:

The single classifiers they have used are:
a. Naive Bayes Classifier
b. Multi-Layer Perceptron Classifier
c. K-nearest Neighbor Classifier
d. Decision Tree Classifier

Naive Bayes classifier is based on supervised learning which uses Bayes Theorem [33,34]. The
classification made by this classifier is quite effective in practice even if its probability of estimation
is inaccurate. Naive bayes works well if features are independent of each other or features are
completely functionally dependent. The accuracy of this classifier depends on the information loss due
to the assumption of independent features. There is no single algorithm for training such classifiers,
but rather a collection of algorithms. An advantage of this is that it requires small training data for
classification. By looping a supervised learning algorithm, you can create a semi-supervised training
algorithm that can learn from both labelled and unlabelled data.
Examples of Naive Bayes Classifier:

« Person Classification:

If a person is male or female depending on features like height, weight, and foot size.
o Document classification:

Classifying documents by their content. Like e-mail spam detection.
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By including optimized training parameters, multi-layer perceptron can be used as supervised learning
tool. The number of hidden layers and number of nodes in each layer can differ based on the problem.
The factor which decides the class is dependent on training data and network architecture [35]. MLP
is a class of ANN (Artificial Neural Network). MLP has at least 3 basic layers, Input, Output, and
hidden layerMLP was popular in finding applications like speech and image recognition, machine

translation, etc.

K-Nearest Neighbor Classifiers is also known as lazy learner. The job of this classifier is to store all
the training data. And when the test data is given the classifier maps the nearest class. The classifier
takes k number of objects as nearest object. The challenge of this classification is that it relies on
choosing the value of k [36]. KNN is also known as a lazy learner algorithm because it does not learn
from the dataset, it just stores all values and finds similarities. The advantage is that it's simple to
implement and it is robust to noise. It is directly proportional to the size of training data, it's more
effective with large training data.

Decision Tree (DT) has a tree like structure using nodes [37]. Only one root node can exist in one DT.
The other nodes are either leaf node or a non-leaf node. DT makes decision using decision node, which
splits the data into its desired class. There are lots of possibilities to measure the split of the
subtrees. Since it is a top-down approach, a small mistake made at the beginning can largely impact

the performance since each iteration is based on the first.

Ensemble Approach based Classifiers:

The logic behind ensemble models is that it’s better to use many mediocre models than one good
model. It combines many single models and creates an ensemble model. Examples of ensemble model
is Random Forest (RF), AdaBoost [38].

The target of this study is to detect whether a job post is fraudulent or not. Identifying and eliminating
these fake job advertisements will help the job seekers to concentrate on legitimate job posts only. In
this context, a dataset from Kaggle is employed that provides information regarding a job that may or
may not be suspicious. Before they fit this data to a model for training, they did some pre-processing
to dataset. They remove null values, stop-words, irrelevant attributes are also removed and extra space
removal. With this cleaned data they can obtain feature vectors. They have used Naive Bayes

Classifier, Decision Tree Classifier, Multi-Layer Perceptron Classifier, K-nearest Neighbor Classifier,
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AdaBoost Classifier, Gradient Boost Classifier and Random Tree Classifier for classifying job post as
fake or not.

To maximize the performance, they are not using default parameters. Then training the model takes
place. After these tests are conducted. For ensemble models it is observed that Random Forest
performance is better. RF gives an accuracy of 98.27%, Cohen-kappa score as 0.74, F1-score 0.97,
MSE 0.02. Therefore, they have concluded that Random Forest is the best candidate for this fake job
prediction.
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CHAPTER 3

SYSTEM ARCHITECTURE AND DESIGN

The arrangement of software components on devices is referred to as software system architecture.
Two components that are closely connected can also be co-located or deployed on distinct machines.
The placement of the software components will also have an impact on the performance and
dependability of the system. The purpose of having a system architecture is to design comprehensive
solutions centered on logically connected and consistent principles, ideas, and attributes. Software
architecture is a type of system blueprint that is essential for understanding, negotiation, and
communication among all stakeholders (users, customers, management, etc.). It makes the entire
system easier to grasp as well as the decision-making processes very efficient. The process of
developing the framework, product innovation, components, protocols, and information for a system
in order to meet defined criteria is known as systems design. Systems design may be described as the
application of systems approach to the creation of products. When a system can fulfil the needs of the
end user, it is considered reliable.

When building a system, we might as well have prepared to implement a selection of characteristics
and services. If the platform can satisfy all such features without having to wear out then the structure
can be deemed reliable. A fault-tolerant system is something that can continue operating reliably in
the event of problems. Faults are mistakes that occur in a specific element of the system. The
occurrence of a malfunction does not ensure that the system will fail. Failure occurs when a system is
unable to operate as intended. It can no longer deliver certain services to end consumers. Availability
is a feature of a system that seeks to maintain an agreed-upon level of organizational performance,

often known as uptime. In order to service the user's requests, a system must offer high availability.

The objective or appearance of a system architecture and design requirements specification may differ
depending on the project, but they all serve the same fundamental function. That is, to guarantee that
the software's owners and developers have a solid awareness of its future specifics and project
estimates. Project estimations are a crucial aspect of project planning that include cost estimates,

resource allocation, and project length. Knowing what technological requirements your program
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requires might assist you in determining these parameters more precisely.

3.1 EXISTING SYSTEMS

Table 3.1 Existing Systems Comparisons

Methodology Metrics Drawbacks

Naive Bayes F1 score—0.72 Naive Bayes assumes that all predictors are

Classifier MSE - 0.52 mdependent, rarely happening in real life.

AdaBoost Classifier | F1 score — 0.98 It needs a quality dataset. Noisy data and outliers

MSE — 0.03 have to be avoided before adopting an Adaboost

algorithm.

K-Nearest F1 score—0.96 Require high memory — need to store all of the

Neighbours Classifier | MSE — 0.04 training data. Sensitive to the scale of the data and
urelevant features.

Multi-Layer F1 score — 0.96 MLP requires tuning several hyperparameters such

Perceptron Classifier | MSE — 0.03 as the number of hidden neurons, layers, and
iterations.

Decision Tree F1 score — 0.97 A small change in the data can cause a large change

Classifier MSE - 0.03 m the structure of the decision tree causing
instability.

3.1.1 CHALLENGES IN THE EXISTING SYSTEM

Naive Bayes Classifier assumes that all predictors are independent, rarely happening in real life.
Adaboost Classifier needs a quality dataset. Noisy data and outliers have to be avoided before adopting
an Adaboost algorithm. K-Nearest Neighbour Classifier Require high memory — need to store all of
the training data. Sensitive to the scale of the data and irrelevant features. Multi-Layer Perceptron
Classifier requires tuning a number of hyperparameters such as the number of hidden neurons, layers,
and iterations. Decision Tree Classifier - A small change in the data can cause a large change in the

structure of the decision tree causing instability.

3.2 PROJECT REQUIREMENTS

Requirements are a description as to what should be done. They are statements about how the system
should function, or about a system property or characteristic. When requirements are ambiguous,
initiatives run the risk of failing to provide what is required. Missed criteria, at the very least,
necessitate rework. There will very certainly be negative consequences for both the schedule and the

budget.
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3.2.1 FUNCTIONAL REQUIREMENTS

Functional requirements are requirements that characterize the product's behavior. These requirements
would be the requirements that the end user requests for as the basic facilities for the system to provide.
As part of the contract, all of these features must be included into the system. These are depicted or
stated in the form of input to the system, operation executed, and intended outcome. In contrast to non-
functional needs, they are essentially the user-specified criteria that can be seen immediately in the
finished product. This part of the document talks about the developmental potential of the software
product's needs. It is the initial phase in the process of requirements analysis. It enumerates the needs
of a certain software system. The specific libraries such as sk-learn, Pandas, NumPy, matplotlib, and
seaborn are detailed below.

3.2.2 NON - FUNCTIONAL REQUIREMENTS

Explains the ambient conditions or attributes necessary for such a product to function properly. These
are the quality restrictions that the software must meet in accordance with the project contract. The
significance or depth to which these aspects are incorporated varies depending on the project. Non-
behavioral requirements are another name for them. A non-functional requirement establishes a
software system's quality attribute. It restricts how the software system satisfies the functional
requirements. Assists you in testing the software's performance. Non-functional requirements —
describe the environmental circumstances or characteristics required for the product to perform
properly. An example would be equipping the model to possess time constraints to process every
request that comes in to be done within 10 seconds. This also includes Testing such as Performance,
Stress, Usability, Security testing, etc. that are performed on the model to ensure the absolute best for
the users. Thereby, allowing them to have a very smooth experience and leave them satisfied with the

results of their online job search.

3.2.3 TECHNICAL REQUIREMENTS

When working on a project or developing software, technical requirements explain the technical

features and difficulties that must be addressed in order for the project or product to function and

execute properly. These technological characteristics might allude to issues such as performance

difficulties, software dependability, and ease of access. Technological requirements, in essence, serve
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as solutions to technical problems. Technical requirements are crucial because they define how
software should perform and behave. This assist both developers and users in determining the optimal
method to utilize the product. A document with properly specified specs aids in the creation of a project

or software with a good implementation procedure. This is referred to as technical requirement.

TO BUILD THE MODEL

Software Requirements:

e Python 3.7.x
e Anaconda/Google Colab/VSCode (Any code editor with Python support)
e Windows/Linux/MacOS (Any OS that supports the above requirements)

Hardware Requirements:
e Any modern Dual Core CPU (Intel Celeron+/ AMD Athelon+)
e 4GB+ RAM
e 1GB HDD space

TO DEPLOY AND RUN THE MODEL

Software Requirements:

Python 3.7.x

Flask

VSCode/Sublime Text (Any Text Editor of your choice)

Hardware Requirements:
e Any modern Dual Core CPU (Intel Celeron+/ AMD Athelon+)
e 4GB+ RAM
e 1GB HDD space

3.3 PROPOSED SYSTEM

The proposed method is to build a machine learning model to classify the real or fake job posting to
overcome this method to implement a machine learning approach. The proposed method is to build a
machine learning model to classify a real or fake job posting. Many systems use neural networks to
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predict such cases, but if the data has any noise or error, there is a possibility of overfit. So, the data
must be as clean as possible, which is difficult in practical applications. Logistic Regression and
Random Forest Classifier are less complex than Neural Network based models hence they are less
susceptible to overfitting. LSTM while having better memory retention than RNN, it is extremely
inefficient and requires a lot of time for processing. Random Forest Classifier is much more time
efficient. In Random Forest Classifier, we don’t have to clean the training data as much as RNN. The
logic is that an ensemble of many mediocre models would still fare better than a single good model.
Because of this, Random Forest Classifier is less prone to overfit. The dataset is first preprocessed and
the columns are analyzed to see the dependent and independent variables then different machine

learning algorithms would be applied to extract patterns and to obtain results with maximum accuracy.

3.4 DESIGN OVERVIEW

In design overview, we go through each part of the algorithm, here we briefly go through data

preprocessing, EDA, comparison, training the model, tuning and testing.

3.4.1 DATA PRE - PROCESSING

The raw data is examined for quality, cleaned, converted, and reduced to a comprehensible format. It
is divided into four primary steps: data cleansing, integration, reductions, and transformation. This is
where NLP will enter the picture. Before modelling, the data is cleaned by eliminating punctuation,
stop words, and digits, which do not really provide information about the target. We eliminate stop
words that feature articles such as an, a, and the from every text in the dataset, leaving only the
keywords for the analysis step. For the text characteristics, we calculate the difference between the
mean number of words in fake and real job listings. The total number of words for the company profile

and requirements is then determined.

3.4.2 EDA

Exploratory Data Analysis also known as 'EDA’ is a critical stage in identifying trends, patterns,
insights and anomalies in a dataset and create a hypothesis based on our current understanding of it.
EDA is not a formal procedure with a set of rules to follow. EDA is, above all, a state of mind. During
the early stages of EDA, now you just should feel comfortable to study any notion that comes to mind.
A few of these concepts will come to fruition, while others will fail. As you continue to explore, you'll

come across a few really fruitful regions that you'll ultimately write up and transmit to others. Even if
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the queries are handed to you on a silver platter, EDA is an important part of any data analysis since
data quality must be regularly assessed. Data cleansing is just one application of EDA: you ask whether
your data meets your needs. Through exploratory data analysis, we identified which of the 18 features
were particularly frequent among fake job listings. We use a pie chart to analyze the percentage
distribution of each feature with the fraudulent output. Using this strategy, we discovered that the
majority of the fraudulent job postings lacked a firm profile as well as valid job descriptions and
requirements. The model is trained by passing the input data through the algorithm and comparing the

processed output to the sample output. The correlation finding is used to adjust the model.

3.4.3 COMPARING THE FOUR MODELS

Four machine learning classification models - Random Forest Classifier, Logistic Regression,
XGBoost, and Support Vector Machines are separately assessed by evaluating them against four
unique EMSCAD dataset features: company profile, job description, benefits, and requirements. These
characteristics were chosen specifically because they identify real job postings from fake ones.

3.4.4 TRAINING
The cleaned dataset is split into separate training and testing datasets in such a way that the number of
real and fraudulent jobs are balanced. The 5 models are then trained to differentiate and identify the
nature of the jobs.

3.45 TESTING AND PERFORMANCE MEASUREMENTS
The 4 ML models and the Ensemble model are tested against four features of the dataset based on
which their performances are evaluated by 3 metrics: Precision and Recall which is then used to

calculate the F1-score that determines the accuracy of the model created.

3.4.6 TUNING THE MODEL

We must now tweak the model that we have developed. The practice of providing weights for every
model is known as tuning. As a result, the accuracy of each model's output is weighted differently.
This manner, we may take advantage of the benefits of each model while without detracting from the
efficiency of the ensemble classifier. We use the brute force strategy, assigning different weights to
every classifier and then evaluating their performance; the model achieves the best results with weights
of 10,10,10,10 to every classifier and a threshold of 20.
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3.4.7 DEPLOYMENT

The Ensemble Model thus created is deployed and connected to a Flask application which is the

interface the user will interact with and enter details which the model will analyze such as the

company’s profile, the job description, benefits and requirements.

3.5

SYSTEM EVOLUTION DESCRIPTION

We research and test various Machine Learning Classification models and came to the following

conclusions:

Naive Bayes - It's frequently used to build machine learning models that can make quick
predictions. A probabilistic classifier predicts based on the likelihood of an object. Assumes
that all predictors are independent, which seldom occurs in practice. It has an issue with zero-
frequency.

Adaboost Classifier - To improve a poor classifier that is marginally better than a random guess
to a good classifier. It is known as Adaptive Boosting because the weights are reassigned to
each instance, with larger weights allocated to erroneously assigned instances. Needs a quality
dataset. Noisy data and outliers have to be avoided before adopting an Adaboost algorithm.
K-Nearest Neighbor Classifiers - A supervised machine learning method that can address
classification as well as regression issues. To fill up missing values and resample datasets.
Requires high memory and needs to store all of the training data.

Multi-Layer Perceptron Classifier - A feedforward artificial neural network produces a set of
outputs based on a set of inputs. It is distinguished by many layers of input nodes that are
connected in a directed graph between the input and output layers. A number of
hyperparameters, such as the number of hidden neurons, layers, and iterations, must be tuned.
Decision Tree Classifier - To successfully handle non-linear datasets, it generates the
categorization model by constructing a decision tree. It manages all forms of data well. A small
change in the data can cause a large change in the structure of the decision tree causing
instability.
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3.6 SYSTEM ARCHITECTURE DIAGRAMS

An architectural diagram is a graphical representation of how software system components are
physically implemented. It displays the software application's overarching architecture, as well as the

relationships, constraints, and boundaries that exist between each component.

3.6.1 ARCHITECTURE DIAGRAM

The architecture diagram is a simple and clear representation of how the model functions to process
the data, create, train, test and tune the model that will detect and differentiate fraudulent and real job
postings to help users avoid getting scammed while searching and applying for jobs online. The
essential feature of such a diagram would be that it arranges and clearly depicts the system's users and
high-level dependencies. It merely takes a couple of minutes to draw the diagram when the concept
and work is completed. This diagram is an important step for app and software developers to show the
basic layout of the system by splitting functional regions into strata. It demonstrates how a normal

software system could interact with its users, other computers, information sources, and services.

‘ Dataset ‘

0 4>{ Test Data }—) Ewvaluating 4>{ Final model ‘

hJ

Data Preprocessing }—r EDA —»{ Cleaning Data }—

¥

4>{ Training Data }—»{ Training Model ‘ ‘ Deployment ‘

Comparing Features .
with Modals 4>{ Creating Model ‘

Fig 3.1 System Architecture

3.6.2 SEQUENCE DIAGRAM
The sequence diagram gives a process view of the model used and is presented in the form that is
similar to a flow chart diagram. It describes the sequence of data and the communication between the

input and outputs of the system components. It reflects the functional flow of the system and clearly
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depicts the flow of data within the system for easy understanding of the model and its internal working.
The dataset is first loaded into the code editor and thoroughly analyzed to see if it is a balanced one or
not. It is then checked for recurrent patterns, checking if there is any missing data, values, garbage
values, stop words etc. The dataset undergoes pre — processing and cleaning it is saved as a new dataset
which is again loaded into the editor. Now, comes the part where we play with various machine
learning models using our dataset and its features. Each of the models are tested, one by one and their
performance results are saved. As the next step, we decide to make a combination of all the models we
just tested in order to obtain an ensemble model capable of making highly accurate predictions to help
protect and inform users of fraudulent job postings online and allow users to find only the real and
authentic job listings. This process is very hassle free as all it requires is for the user to enter just four
details regarding the job listing, they want to check. First, enter the name of the company, the
description they have provided, the qualifications for the position they are recruiting for and the
benefits the company provides for the hires.

ML Training Pre-processing Dataset ML Model Prediction

1. Get Dala . 2. Load Dataszet

3. Retrieve Dataset

k-
L J
I

5. Saving Model

!
(.

6. Request Prediction

L !
H 7. Get Prediction _ |
T =

Fig 3.2 Sequence Diagram

3.6.3 ACTIVITY DIAGRAM
An activity diagram, similar to a data flow diagram, visually depicts a series of actions or the flow of

power in a system. In business process modelling, activity diagrams are frequently employed. They
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may also use a use case graphic to illustrate the stages. Modeled activities can be both sequential and
concurrent. The activity diagram aids in visualizing the flow of work from one action to the next. It
emphasized the flow state and the sequence in which it happens. The flow can be in a sequence,
branching, or concurrent, and it has forked, joined, and so on to cope with such flows. An object-
oriented flowchart is another name for it. It includes activities that are made up of a series of actions

or processes that are used to model the behavioral diagram.

Data Pre-processing Machine Learning Flask Output Screen
[ s
\L Yes No
= .
Load Dataset —>{ Clean data with NLF | —| Load the PKL Model
A v
S ~\ Y Fake Job Posting Real Job Posting
Perform i i

| Preliminary | ‘ ot m;;;;‘?.lér";o e .‘ . Input job data

\ Analysis ) J \\ ’/

T T Yes

./ \. L 4
[ Calculate fotal Choose the best T T
\ dataset information / classifier / \

A / ( Predict with the No

— \  loaded model
1 ~_

y ; .

| Remove unusable | Save the chosen P
data / model into PKL file '\./'
S S —

Fig 3.3 Activity Diagram
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CHAPTER 4

METHODOLOGY

The dataset is cleaned by removing stop words, punctuations etc. From the exploratory data analysis,
the distribution of real and fraudulent jobs is imbalanced. The dataset is split into train and test sets
such that the datasets are balanced to avoid bias towards any of the classes. From the dataset, four
distinct features are taken — Job Description, Job Requirements, Job Benefits and Company Profile and
first, individually tested with the Random Forest Classifier, Logistic Regression, Support Vector
Machines and XGBoost models. The individual performances of each model against each feature were
determined by calculating their F1 Scores from Precision and Recall metrics of each feature for their
respective models. To obtain a model that can make predictions with the highest accuracy, the 4 models

tested are combined to create our very own Ensemble model.

4.1 OBJECTIVE

The goal is to develop a machine learning model that can classify real or fake jobs. We create an
ensemble model with Random Forest Classifier, Logistic Regression, SVM, and XGBoost for each
feature. For each feature, a classifier is chosen in such a way that it gives maximum accuracy. The

final model is implemented through Flask.

4.2 PROJECT GOALS

« Exploration data analysis of variable identification
o Loading the given dataset
o Import required libraries packages
o Analyse the general properties
o Find duplicate and missing values
o Checking unique and count values
e Uni-variate data analysis
o Rename, add data, and drop the data
o To specify data type
« Exploratory data analysis of bivariate and multivariate
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o Plot diagram of pair plot, heatmap, bar chart and Histogram

e Method of Outlier detection with feature engineering

o Pre-processing the given dataset

o Splitting the test and training dataset

o Comparing the Decision tree and Logistic regression model and random forest, etc.

o Comparing algorithms to predict the result

o Based on the best accuracy

4.3 SCOPE:

The main Scope is to detect fake job postings, which is a classic text classification problem with the

help of NLP and machine learning algorithms. It is needed to build a model that can differentiate

between a “Real” job and a “Fake” job.

4.4 TECHNICAL MODULES

We have mentioned the modules that our project has. This gives a brief description of all the modules

and explains in detail.

4.4.1. DATA PREPROCESSING

Dataset:

The dataset contains 17880 entries with 18 features. The dataset is sent for the cleaning process. Fig
4.1 lists all the features available in the dataset. Fig 4.2 mentions the data distribution between the two

classes before data is being cleaned.
job_id
location
salary range
description
benefits
has _company logo
employment type
required _education

function

title

department
company profile
requirements
telecommuting
has_questions
required experience
industry

fraudulent

Fig 4.1 List of features in dataset
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Cleaning:

The distribution of the target feature (fraudulent

16000
14000
12000

10000

count

B0OO
6000
4000

2000
B66
I

0 1
raudulent

Fig 4.2 Distribution of dataset for fraudulent and non-fraudulent before cleaning

We first separate all the features into 4 parts.

Binary type:

Features like telecommuting, has_company_logo, and has_questions are binary types, with

only two answers, true is represented as numeric 1 and false is represented as numeric 0.

Category type:

Features like department, industry, function, employment_type, required_experience, and

required_education are bounded by certain categories.

o

o

Department has a wide range like Marketing, Sales, R&D, Production, etc

Industry has Computer Software, Hospital & Health Care, Information Technology and
Services, Management Consulting, etc.

The function has Customer Service, Management, Information Technology, etc.
Employment_type has Full-time, Contract, Part-time, Temporary, etc.
Required_experience has Mid-Senior level, Associate, Associate, etc.

Required education has bachelor’s degree, High School or equivalent, Master's
Degree, etc.

Text type:
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The features that have text as data are known as Text features. Features like title,
company_profile, description, requirements, and benefits, all describe the job posting, and it's
an important component for identifying job postings. This is where we also are using NLP.

o Complex type:
These are certain types of features that don't fall under any definite category. They are features

like location and salary_range.

Feature Preparation:
This is the part where we take each type of data we separated in the previous phase and clean them
Text Type:
Adding indicators
Fill-NA: First go through the dataset and fill the empty inputs with an empty string.
Pre-process text: This is where we will be using NLP. For each text data, we remove stop words.
Stop words contain articles like “an, a, the”, Etc. It removes unimportant words and keeps the
keywords for analysing phase. We create another column named “company profile specified”. This
has a Boolean value and tells whether there is a company profile or not. Likewise, we create column
names as “description specified”, “requirements specified”, and “benefits specified”.
Complex Type:
Complex type consists of location and salary, so we work on both separately
Location
Each location is mostly of the type of city, state, country. All are separated by commas (,). So, we
split these entities.
Sometimes there won't be 3 entities alone, it can be two or four or five, or in some cases, 3 entities
might be there, but they would have not mentioned some entity and rather mentioned something
else. In those cases, we attach the string “Unspecified”
After we split all data to country, stale, and city. We create 3 columns in the table namely country,
state, and city. Then we add all data we have collected to all columns.

Finally, we remove the column location since we put it all into 3 rows as shown in Fig 4.3.
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country

Ney

Auckland

Unspecified

Berlin

San Francisco
Fig 4.3 New columns are created for location
Salary range
Salary range is in the format min salary - max salary.
If the range is not specified, we replace the null value with a range 0-0 (zero to zero).
Then just like in the location column, we split the min salary and max salary
Then we create two columns called min_salary and max_salary, and we add the values to these

columns like shown in Fig 4.4.

min_salary max_salary

Fig 4.4 New columns for salary range

We also created another column called salary_specified, this is for reference, it has a Boolean value
like shown in Fig 4.5.
min_salary max salary salary specified

1




Fig 4.5 salary_specified column

Finally, we drop the salary_range column from the table. We check if there are any null data with
the features. For Boolean type naturally, there is no null value. In category type, there are null
values, so we can fill all null values with the string “Unspecified”.

With this, all values are filled, and no null values are present.

Finally, for the fraudulent column, it's a Boolean type that says whether the job posting is fake or
real. We change the Boolean to a text saying whether the job posting is real or fake.

We save the cleaned data to “cleaned-data.csv”

From Fig 4.6 we can see that after data pre-processed the dataset is balanced.

Distribution of fraudulent

700 4
600 1
500 1
% 400 1
-

00 4
200 4

100 1

FAKE

fraudulent

Fig 4.6 Balanced Data set after cleaning

4.4.2. EXPLORATORY DATA ANALYSIS
In modern statistics and machine learning, data visualisation is a crucial ability. Statistics is
concerned with quantitative data descriptions and estimations. Data visualization is a valuable set
of tools for acquiring a qualitative understanding of data. This might be useful for spotting trends,
faulty data, outliers, and other things when studying and getting a dataset. Data visualizations may
be used to communicate and show crucial relations in graphs and charts that are far more visceral
and meaningful to stakeholders than measurements of correlation or importance with a little subject
expertise. Data visualization and data exploration are areas in and of themselves, and it will be

recommended that you read some of the books indicated at the conclusion for further information.
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Data may not make sense unless it is presented in a visual format, such as charts and graphs. The
ability to see data samples and other objects rapidly is a crucial talent in both applied statistics and
applied machine learning. It will show you how to utilize the many sorts of plots available when

visualizing data in Python to help comprehend your own data.

4.4.3. CORRELATION
For every feature, we compare it with the fraudulent output, and see how much correlation is there

between each feature with the output.

4.4.4, COMPARISON
When we have a fresh dataset, it's a smart option to display it using a variety of ways so we can see it
from multiple angles. Model selection follows the same logic. To pick the one or two to complete, we
should look at the direct results of your machine learning techniques in a variety of methods. Using
various visualization approaches to display the average accuracy, variance, and other features of the
distribution among model accuracies is one way to do this.
In the next part, we see how to accomplish it in Python. The key to a true comparison of ML algorithms
is to ensure that each method is assessed in the very same way on the very same data, which may be
accomplished by requiring each method to be tested on the same test harness.
The following algorithms were compared with the 4 features that is compatible with the output

« Random Forest Classifier

« Logistic regression

e SVM

e XGBoost

Each method is evaluated using the K-fold cross validation technique, which is set up with the same
random seed to ensure that the training data is divided in the same way and that each strategy is
evaluated in the same way. Separate the training and testing sets. It is feasible to predict the outcome

by comparing accuracy.

Random Forest Classifier:
RFC is just a combination of many decision trees. A Decision tree is, as the name suggests, takes
decisions at times based on the data that are present. RCF is an ensemble model, an ensemble means

a combination of many decision trees. With the data collected, the decision tree gives output and with
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the output, we get from the decision tree, we create another decision tree for the outputs we get to get
the accurate output while also considering many factors at the same time. The logic behind this is that
a combination of many mediocre models is better than one good model. We need a Random Forest
because we need features that have some predictive power. The trees of the forest and their predictions
need to be uncorrelated so that the output does not waver. Some Machine Learning models need data
in a specific format, such as the Random Forest method, which does not accept null values. As a result,
null values must be handled from the initial source data set in order to run the random forest method.
Another consideration is that the data set be written in such a manner that many Machine Learning and

Deep Learning algorithms may be run on the same dataset.

Logistic regression:

Let us consider a scenario where we must tell whether that’s a spam email or not. If we use linear
regression for this, then there is a need for setting up thresholds and that threshold-based classification
is made. LR is mainly used when the target is categorical. In our project, we just must mention whether
the job posting is fake or not, which falls into only two categories. It is a process of modelling the
probability of a certain outcome from the input. As we mentioned before, LR works well with binary
outcomes. Of Course, there are Multinomial logistic regression where the outcome can be more than
two. It is considered as a supervised ML algorithm that is useful for binary classification problem. The
difference between linear regression and logistic regression is that in logistic regression, the outcomes

are bound between 0 and 1.

Itis said that Logistic regression is a transformation of linear regression using a function called sigmoid
function. The advantage is that it can be used both for classification and also class probability

estimation because it is tied with logistic data distribution.

Support Vector Machines

Support vector machines are a type of machine learning technique that can be used for both regression
and classification, however it is more commonly employed for classification. SVM is an n-dimensional
space model. We plot the data items in any nth dimension, where n is the number of features we have.
As a result, the more features we have, the more dimensions we can deal with. The classification is

then carried out by locating the hyperplane that separates these two classes.
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The main advantage is that it can provide high-dimensional spaces. It is flexible when the number of
dimensions is greater than the number of samples that we are provided. The reason we are
implementing this classifier is that it can still predict the output with some missing samples as it was

mentioned before.

XGBoost:

XGBoost is an optimized gradient boosting library that is designed to be efficient, flexible, and
portable. From the Gradient Boosting framework, it can implement the machine learning algorithms.
The reason to use XGBoost is because it has faster execution speed when compared to other gradient
boosters. The individual model performance given by XGBoost is also incredible.

It is an open-source implementation of gradient boosted tree techniques that is popular and efficient.
Gradient boosting is supervised learning that combines an ensemble of estimates from a set of simple
and weak models to try to properly predict a target variable. As a result, because our dataset is severely
uneven, XGBoost can be of great assistance to our system.

4.4.5. TRAINING
The cleaned dataset is split into separate training and testing datasets in such a way that the
number of real and fraudulent jobs are balanced. The ensemble model is then trained to
differentiate and identify the nature of the jobs.

4.4.6. TUNING THE MODEL
Now that the model is created, we must tune it. Tuning is the process of assigning weights to each
model. So that the result of each model is given separate importance based on their accuracy. This
way, we can get the advantages of each model and it will not pull down the performance of the
ensemble model. We are using brute force method, we assign different weights to each classifier
and then check their performance, the highest performance that is achieved by the model is of by
the weights 10,10, 10, 10 for each classifier and threshold of 20.

4.4.7. TESTING & PERFORMANCE MEASUREMENTS
The 4 ML models and the Ensemble model are tested against four features of the dataset based
on which their performances are evaluated by 3 metrics: Precision and Recall which is then used

to calculate the F1-score that determines the accuracy of the model created.
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Measurement Metrics:

Accuracy:

Logistic regression algorithm also uses a linear equation with independent predictors to
predict a value. The predicted value can be anywhere between negative infinity to
positive infinity. It needs the output of the algorithm to be classified variable data.
Higher accuracy predicting the result is a logistic regression model by comparing the

best accuracy.

The Proportion of the total number of predictions that is correct otherwise overall how

often the model correctly predicts defaulters and non-defaulters.

(tp+tn)
(tp+in+fp+fn)

Accuracy =
tp - number of true positives

fp - number of false positives
fn - number of false negatives

tn - number of true negatives
Precision and Recall:

Both are used for evaluating models of a particular class of interest, also known as the positive
class.

Precision is, for all positive predictions, how many are real positives?

Recall is, for all real positive cases, how many are predicted positive?
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Formula:

. tp
Precision =
(tp+fp)
__tp
Recall = pri)

tp - number of true positives
fp - number of false positives

fn - number of false negatives

F1 Score:
It is used to assess the correctness of a model on a dataset. It assesses binary classification
systems that assign positive or negative labels to examples.

F1-Score Formula:

Fl - %

recall’ precesion

— 72 % precisionxrecall

precisiontrecall

Fl = LL
tp+-(fp+fn)

tp - number of true positives
fp - number of false positives

fn - number of false negatives

False Positives (FP):
When the actual class is negative, and the projected class is positive. For example, if the real
class states this passenger died, but the anticipated class predicts this passenger will live.

40



False Negatives (FN):
When the actual class is positive, and the projected class is negative. For example, if the real

class states this passenger survived, but the anticipated class predicts this passenger died.

True Positives (TP):
These are the accurately predicted positive values, indicating that the actual class value is yes,
and the projected class value is also yes. For instance, if the actual class value indicates that this

passenger survived, and the projected class also suggests that this passenger survived.

True Negatives (TN):

These are the accurately predicted negative values, indicating that the actual class value is no,
and the projected class value is also no. For instance, if the actual class value indicates that this
passenger died, and the projected class also suggests that this passenger died.

Mean Squared Error:
This is the most basic loss function. So basically, we subtract the model’s predictions and the

truth, square it, and take the average across the entire dataset.

Formula:

1
MSE = ;Zﬁvﬂ(}’i— 5.)°

N - The number of samples we are testing
yi - Ground truth
¥,- Model’s prediction

MSE and F1-score and indirectly proportional, the more MSE is, the less F1-score is. So, our goal

is to minimize as much MSE as possible. MSE can never be negative.

4.4.8. DEPLOYMENT
The Ensemble Model thus created is deployed and connected to a Flask application which is the
interface the user will interact with and enter details which the model will analyze such as the

company’s profile, the job description, benefits, and requirements.
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CHAPTER 5

CODING AND TESTING

5.1 CLEANING THE DATASET

There will always be some amount of inaccuracy with datasets regardless of how the data in it is
obtained. What we call, "Messy data" is data that is filled with irregularities and anomalies. Though
some of the variations are real since they represent variance in the environment, others are most likely
due to measurement, input, processing or data integration errors. These might range from errors human
negligence, badly designed records, or merely an inability to control the format and the kind of data
acquired from various external data sources. Such inconsistencies cause chaos when attempting to
analyze data. Prior to actually performing data pre - processing for analysis, effort should be made to

ensure that the data is as reliable and precise as feasible.

5.1.1 IMPORTING LIBRARIES

Python's import function is analogous to header files in other languages such as C and C++. Python
modules can access code from other modules by importing the specific file or method using import.
The import function is the most used method of triggering the import mechanism in python. Python
considers a file to be a module. The module must be integrated using the import keyword before it can
be used. By importing the module, the methods and variables included within the file may be utilized

in another program. This capability is accessible in other programming languages as well.

import pandas as pd

import numpy as np

import nltk

from nltk.corpus import stopwords

from nltk.tokenize import word_tokenize
from nltk.stem import PorterStemmer

Here we import the required libraries for the model Pandas is a free and open source data analysis
package built on Python programming language. The pd alias is often used to import this library. alias:
In Python, an alias is a different name for the same item. Instead of pandas, the Pandas package is now
referred to as pd. The as pd section of the code then instructs Python to assign pandas the alias pd. The

pandas functions can be used by having to type pd.function name instead of pandas.function name.
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The import NumPy line of code instructs Python to import the NumPy library into the current
environment. The as np section of the code then instructs Python to assign NumPy the alias np. You
may utilize NumPy functions by just entering np. NLTK is a Python toolkit for working with natural
language processing (NLP). It provides us with a large number of test datasets for various text
processing libraries. NLTK may be used to execute a number of tasks such as tokenizing, parse tree
visualization, and so on. Import stop words from nltk.corpus. This is a list of English lexical stop
words. That is, most NLP actions, such as part-of-speech labelling, tokenization, and parsing, ignore
these words. Tokenizers are program that convert strings into lists of substrings. Tokenizers, for
example, can be used to locate letters and commas, whitespace, full stops etc. in a string.

5.1.2 READING AND ANALYZING THE DATASET

data = pd.read_csv("./fake_job_postings.csv")
data.head(10)

5.1.3 SPLITTING THE DATA INTO GROUPS OF FEATURE TYPES

bin_features [ "telecommuting', "has_company logo', 'has_questions']
cat_features = ['department', 'employment_ type', 'required_experience’,
'required_education', 'industry', 'function']

text_features = ['title', 'company_profile', ‘'description', 'requirements’,
"benefits']
complex_ features = ['location', 'salary range']

The features of the dataset are split based on their respective feature types. Here, telecommuting,
company logo, etc. all belong to ‘bin_features’ as they are binary features. Features like department,
employment type, experience, educational qualifications etc. are categorical features and features like
the company’s title, profile, description, requirements and benefits fall under the text features category.

However, certain features like location and salary range are considered complex features here.

data.drop('job_id', axis=1, inplace=True)

As the feature, ‘job_id’ is of no relevance to our model and usage, we drop the entire column.

5.1.4 ADDING INDICATORS AND FILLING NA

for feature_name in text_features[1:]:
un_feature_name = f"{feature name} specified”
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data[un_feature_name] = (~data[feature_name].isna()).astype('int")
bin_features += [un_feature name]
data.head()[text _features + bin_features[-4:]]

for feature_name in text_features[1:]:
data[feature_name].fillna('', inplace=True)
nltk.download('stopwords')
nltk.download('punkt')
nltk_lang = stopwords.fileids()
stop_words = set(stopwords.words(nltk_lang))
porter = PorterStemmer()
def preprocesstexts(texts):
preprocess_texts = []
for text in texts:
text = ''.join([sym.lower() for sym in text if sym.isalpha() or sym ==
tokenized_text = word_tokenize(text)
tokenized_text_wo_sw = [word for word in tokenized_text 1if word not 1in
stop_words]
tokenized text wo_sw_stem = [porter.stem(word) for word in
tokenized_text_wo_sw]
preprocess_texts += [' '.join(tokenized_text_wo_sw)]
return preprocess_texts
for feature_name in text_features:
data[feature_name] = preprocesstexts(data[feature_name])

data[text_features].head()

company_profile description requirements

food weve created groundbreaking food fastgrowing james beard awardwinning experience content management systems major
awardwinning ... onli.. pl

D

benefits

seconds worlds cloud video production service  organised focused vibrant awesomedo passion get usthrough part seconds team

o expect youyour key responsibility communicate ...

implement precommissioning commissioning

valor services provides workforce solutions me... client located houston actively seeking experi... —

Fig. 5.1 important text features of the dataset

5.1.5 COMPLEX FEATURES OF THE DATASET
LOCATION

location = data['location'].copy()
location.head(15)
location_splitted = list(location.str.split(', ').values)
location_splitted[:15]
for loc_ind, loc in enumerate(location_splitted):
if loc is np.nan:
location_splitted[loc_ind] = ['Unspecified'] * 3
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else:
for el_ind, el in enumerate(loc):
if el == '":
loc[el_ind] = 'Unspecified’
location_splitted[:15]
e [['US", "NY', "New York'],
'NZ', 'Unspecified’, "Auckland'],
‘ust, "IA", 'Wever'],
‘us', 'DC', 'Washington'],
‘Us*, 'FL', '"Fort Worth'],
‘us', "MD", 'Unspecified’],
'DE', 'BE', 'Berlin’],
'CA", 'San Francisco'],
‘us', 'FL', 'Pensacola’],
'us', 'AZ', 'Phoenix'],
'us', "N1', 'Jersey City'],
'GB", 'LND', 'London'],
‘ust, 'CT', 'Stamford'],
‘Us*, 'FL', 'Orlando’],
AU, CNSW', "Sydney’]]

Lo B s I 5 e B e B e N e B e FN e B e AN e AN e AN e B e N
=
LA
[

Fig. 5.2 Locations mentioned in the dataset

LOCATION WITH GREATER THAN OR LESSER PARTS

for loc_ind, loc in enumerate(location_splitted):
if len(loc) > 3:
print(loc_ind, loc)
for loc_ind, loc in enumerate(location_splitted):
if len(loc) < 3:
print(loc_ind, loc)
location_splitted = list(map(lambda loc: list(loc), location_splitted))
for loc_ind, loc in enumerate(location_splitted):
if len(loc) > 3:
location_splitted[loc_ind] = loc[:2] + [', '.join(loc[2:])]
if len(loc) < 3:
location_splitted[loc_ind] += ['Unpecified'] * 2

data_location = pd.DataFrame(location_splitted, columns=['country', 'state’,
‘city'])

cat_features += ['country', 'state', 'city']
data = pd.concat([data, data_location], axis=1)
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data.drop('location', axis=1, inplace=True)
data_location.head(15)

country state city
0 us MY Mew York
1 NZ Unspecified Auckland
2 us 1A Wever
3 us DC Washington
4 us FL Fort Worth
5 us MD Unspecified
b DE BE Berlin
7 us CA  5an Francisco
8 us FL Pensacola
9 us AT Phoenix
10 Us M) lersey City
11 GB LMD London
12 us CT Stamford
13 us FL Orlando
14 Al NSW Sydney

Fig. 5.3 Locations with greater than or lesser than parts

SALARY RANGE

salary_range = data.salary_range.copy()
salary_range.head(15)
salary range.fillna('e-0', inplace=True)
salary_range_sep = list(salary_range.str.split('-"').values)
salary_range _sep[:5]
for range_ind, s_range in enumerate(salary_range sep):
if len(s_range) < 2 or len(s_range) > 2:
print(range_ind, s_range)
salary_range_sep[5538] = ['40000', '40000']
error_range_inds = []
for range_ind, s_range 1in enumerate(salary_range sep):
min_value, max_value = s_range
i1f not min_value.isdigit() or not max_value.isdigit():
print(range_ind, (min_value, max_value))
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error_range_inds += [range_ind]
for range_ind 1in error_range_inds:
salary_range_sep[range_ind] = ['6', '0']
data_salary_range = pd.DataFrame(np.array(salary_range_sep, dtype='inte4'),
columns=[ "'min_salary', 'max_salary'])
data_salary_range.head(15)
data_salary range['salary_specified'] = ((data_salary range.min_salary /= @) |
(data_salary_range.max_salary /=
0)).astype('inte4’)
data_salary_range.head(15)
num_features = ['min_salary', 'max_salary']
bin_ features += ['salary specified']
data = pd.concat([data, data_salary_range], axis=1)
data.head()
data.drop('salary range', axis=1, inplace=True)
data.info()

data.fillna('Unspecified', inplace=True)

data.info()
23 max _salary 17888 non-null int64
24 salary specified 17888 non-null int64
ditypes: int32(4), inté64(7), object(l4)
Fig. 5.4 Output where features are not specified
=11
for ind, val 1in enumerate(data['fraudulent']):
if val == 1:
f.append('FRAUD")
else:

f.append('REAL")
data.pop('fraudulent")

print(bin_features)
print(text_features)
print(complex_features)
print(cat_features)
print(num_features)
data[ 'fraudulent'] = f
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Fig. 5.5 Salary Ranges offered by companies in the dataset

5.1.6 SAVING THE CLEANED DATASET TO ANEW CSV FILE

data.to_csv('./cleaned-data.csv')

5.2 EXPLORATORY DATA ANALYSIS

fig = plt.figure(figsize=(25, 30))
outer = gridspec.GridSpec(4, 2, wspace=0.2, hspace=0.1)

for feature_ind, feature_name in enumerate(bin_features):
inner = gridspec.GridSpecFromSubplotSpec(1l, 2, subplot_spec=outer[feature_ind],
wspace=0.5, hspace=0.7)

ax = plt.Subplot(fig, outer[feature_ind])

ax.set_title(f'The distribution of fraudulent for each {feature_name}\'s class"')
ax.axis('off")

fig.add_subplot(ax)

for feature_class in [0, 1]:
ax = plt.Subplot(fig, inner[feature_class])
feature_cl_vc = data[data[feature_name] ==
feature_class].fraudulent.value_counts().sort_index()
if len(feature_cl_vc) ==
feature_cl_vc.index = ['non-fraudulent', 'fraudulent']
else:
feature_cl_vc.index = ['fraudulent']

ax.pie(feature_cl_vc.values, labels=feature_cl_vc.index, autopct='%1.1f%%")
ax.set_title(f'{feature_name} = {feature_class}"')
fig.add_subplot(ax)

fig.suptitle('Distributions of fraudulent for the binary features')
fig.subplots_adjust(top=0.95)
fig.show()

5.3 CREATING A CONTINGENCY TABLE

cont_table = pd.crosstab(data.fraudulent, data.description specified)
print('Contingency table (fraudulent x description_specified):')
display(cont_table)
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Contingency table (fraudulent x description_specified):

description_specified 0 1
fraudulent

0 0 17014

1 1 865

Fig. 5.6 Contingency Table for fraudulent x description feature of the dataset

def print_stats_for_texts(feature_name):
'''Calculates statistics for fraudulent and non-fraudulent count of words in
feature\'s texts.'''
if feature_name == 'title’:
feature_values_0f = data[(data.fraudulent == 0)][feature_name].astype(str)
feature_values_1f = data[(data.fraudulent == 1)][feature name].astype(str)
else:
feature_values_0f = data[(data.fraudulent == 0) &
data[f'{feature_name} specified']][feature_name].astype(str)
feature_values_1f = data[(data.fraudulent == 1) &
data[f'{feature_name}_specified']][feature_name].astype(str)

lens_of
lens_1f
mean_lens_of
mean_lens_1f

feature_values_0Of.str.split(' ').apply(len)
feature_values_1f.str.split(' ').apply(len)
round(np.mean(lens 0f), 4)
round(np.mean(lens_1f), 4)

bigger_mean, smaller_mean = (lens_of, lens_1f) if mean_lens_Of > mean_lens_1f
else (lens_1f, lens_of)
mean_diff = round(np.mean(bigger _mean) - np.mean(smaller_mean), 4)

print(f'Feature: {feature_name}\n======"')

print(f'Mean of {feature_name}\'s count of words in non-fraudulent posts:
{mean_lens_0f}")

print(f'Mean of {feature_name}\'s count of words in fraudulent
posts: {mean_lens_1f}")

print(f'Difference in these means: {mean_diff}')
for feature_name in text_features:

print_stats_for_texts(feature_name)

print()
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Feature: title

Mean of title's count of words in non-fraudulent posts: 3.2794
Mean of title's count of words in frauvdulent posts: 3.5612
Difference in these means: 8.2818

Feature: company profile

Mean of company profile's count of words in non-fraudulent posts: 66.9311
Mean of company profile's count of words in fraudulent posts: 59.2294
Difference in these means: 7.7817

Feature: description

Mean of description's count of words in non-fraudulent posts: 183.8457
Mean of description’'s count of words in fraudulent posts: 188.8358
Difference in these means: 3.8898

Feature: reguirements

Mean of requirements’s count of words in non-fraudulent posts: 68.1132
Mean of reguirements’'s count of words in fraudulent posts: 47.3244
Difference in these means: 12.7887

Feature: benefits

Mean of benefits's count of words in non-fraudulent posts: 38.6589
Mean of benefits's count of words in fraudulent posts: 38.5359
Difference in these means: 8.1231

Fig. 5.7 Word Count for the main features of the fraudulent and real postings

data[ 'company profile count_of words'] =

data[ 'company_profile'].astype(str).str.split(' ').apply(len)

data[ 'requirements_count_of words'] = data['requirements'].astype(str).str.split("’
').apply(len)

data.head()[['company_profile_count_of words', 'requirements_count_of words']]

company_profile_count_of words requirements_count_of words

0 86 73
1 96 117
2 75 103
3 55 121
4 146 61
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Fig. 5.8 Word Count for company profile and requirements

5.4 CORRELATION

num_features += ['company_profile_count_of_words', 'requirements_count_of_words']

plt.figure(figsize=(20,20))
plt.show(sns.heatmap(data.corr(), annot=True))
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Fig. 5.9 Correlation matrix of all the features

5.5 COMPARISON

from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
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from sklearn.svm import LinearsSVC

from sklearn.pipeline import Pipeline

from sklearn.metrics import classification_report, accuracy_score, confusion_matrix,
ConfusionMatrixDisplay

from xgboost import XGBClassifier

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.feature_extraction.text import CountVectorizer
import re

import string

import nltk

from nltk.corpus import stopwords

import matplotlib.pyplot as plt

import seaborn as sns

dataSet = pd.read_csv("../cleaned-data.csv")

Y = np.array(dataSet['fraudulent'])

rf = RandomForestClassifier()

lr = LogisticRegression(max_iter=1000)

svm = LinearSVC(C=0.01, class_weight="balanced", random_state=42)
svm = Pipeline([('svm', svm)])

xgbc = XGBClassifier(objective="binary:logistic")

Y = np.array(dataSet['fraudulent'])

plt.figure(figsize=(20,20))
plt.show(sns.heatmap(dataSet.corr(), annot=True))

5.5.1 DATA FEATURE 1 - COMPANY DESCRIPTION

X = np.array(dataSet[ 'company profile'])

newX = ['Unspecified' if x is np.NaN else x for x in X]

X = newX

cv = CountVectorizer()

X = cv.fit_transform(X)

x_train, x_test, y train, y test = train_test_split(X, Y, test size=0.33,
random_state=42)

rf.fit(x_train, y_train)
lr.fit(x_train, y_train)
svm.fit(x_train, y_train)
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xgbc.fit(x_train, y_train)

rfP = rf.predict(x_test)
1rP = 1r.predict(x_test)
svmP = svm.predict(x_test)
xgbP = xgbc.predict(x_test)

RANDOM FOREST CLASSIFIER

print("Accuracy :", accuracy_score(y_test, rfP), end="\n\n")
print(classification_report(y_test, rfP))

print("Confusion Matrix")

cm = confusion_matrix(y_test, rfP)

disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()

plt.show()

LOGISTIC REGRESSION

print("Accuracy :", accuracy_score(y_test, 1rP), end="\n\n")
print(classification_report(y_test, 1rP))

print("Confusion Matrix")

cm = confusion_matrix(y_test, 1rP)

disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()

plt.show()

SUPPORT VECTOR MACHINE

print("Accuracy :", accuracy_score(y_test, svmP), end="\n\n")
print(classification_report(y_test, svmP))

print("Confusion Matrix")

cm = confusion_matrix(y_test, svmP)

disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()

plt.show()

XGBOOST

print("Accuracy :", accuracy score(y_test, xgbP), end="\n\n")
print(classification_report(y test, xgbP))

print("Confusion Matrix")

cm = confusion_matrix(y_test, xgbP)

disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()

plt.show()
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5.5.2 DATA FEATURE 2 -JOB DESCRIPTION

X = np.array(dataSet[ 'description'])

newX = ['Unspecified' if x is np.NaN else x for x in X]
X = newX

cv = CountVectorizer()

X = cv.fit_transform(X)

x_train, x_test, y train, y test = train_test_split(X, Y, test_size=0.33,
random_state=42)

rf.fit(x_train, y_train)

lr.fit(x_train, y_train)

svm.fit(x_train, y_train)

xgbc.fit(x_train, y_train)

rfP = rf.predict(x_test)

1rP = 1r.predict(x_test)

svmP = svm.predict(x_test)

xgbP = xgbc.predict(x_test)

RANDOM FOREST CLASSIFIER

print(“"Accuracy :", accuracy_score(y_test, rfP), end="\n\n")
print(classification_report(y_test, rfP))

print("Confusion Matrix")

cm = confusion_matrix(y_test, rfP)

disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()

plt.show()

LOGISTIC REGRESSION

print("Accuracy :", accuracy_score(y_test, 1rP), end="\n\n")
print(classification_report(y_test, 1rP))

print("Confusion Matrix")

cm = confusion_matrix(y_test, 1rP)

disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()

plt.show()

SUPPORT VECTOR MACHINE

print("Accuracy :", accuracy_score(y_test, svmP), end="\n\n")
print(classification_report(y test, svmP))
print("Confusion Matrix")
cm = confusion_matrix(y_test, svmP)
disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()
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plt.show()

XGBOOST

print("Accuracy :", accuracy_score(y_test, xgbP), end="\n\n")
print(classification_report(y_test, xgbP))

print("Confusion Matrix")

cm = confusion_matrix(y_test, xgbP)

disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()

plt.show()

5.5.3 DATA FEATURE 3 - REQUIREMENTS

X = np.array(dataSet['requirements'])

newX = ['Unspecified’ if x is np.NaN else x for x in X]

X = newX

cv = CountVectorizer()

X = cv.fit_transform(X)

x_train, x_test, y train, y test = train_test_split(X, Y, test_size=0.33,
random_state=42)

rf.fit(x_train, y_train)
lr.fit(x_train, y_train)
svm.fit(x_train, y_train)
xgbc.fit(x_train, y train)

rfP = rf.predict(x_test)
1rP = lr.predict(x_test)
svmP = svm.predict(x_test)
xgbP = xgbc.predict(x_test)

RANDOM FOREST CLASSIFIER

print("Accuracy :", accuracy_score(y_test, rfP), end="\n\n")
print(classification_report(y_test, rfP))

print("Confusion Matrix")

cm = confusion_matrix(y_test, rfP)

disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()

plt.show()

LOGISTIC REGRESSION

on

print("Accuracy :", accuracy_score(y_test, 1rP), end="\n\n")
print(classification_report(y_test, 1rP))
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print("Confusion Matrix")

cm = confusion_matrix(y_test, 1rP)

disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()

plt.show()

SUPPORT VECTOR MACHINE

print("Accuracy :", accuracy_score(y_test, svmP), end="\n\n")
print(classification_report(y_test, svmP))

print("Confusion Matrix")

cm = confusion_matrix(y_test, svmP)

disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()

plt.show()

XGBOOST

print("Accuracy :", accuracy_score(y_test, xgbP), end="\n\n")
print(classification_report(y_test, xgbP))

print("Confusion Matrix")

cm = confusion_matrix(y_test, xgbP)

disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()

plt.show()

5.5.4 DATA FEATURE 4 - BENEFITS

X = np.array(dataSet[ 'benefits'])

newX = ['Unspecified' if x is np.NaN else x for x in X]
X = newX

cv = CountVectorizer()

X = cv.fit_transform(X)

x_train, x_test, y train, y test = train_test split(X, Y, test size=0.33,
random_state=42)

rf.fit(x_train, y_train)

lr.fit(x_train, y_train)

svm.fit(x_train, y_train)

xgbc.fit(x_train, y train)

rfP = rf.predict(x_test)

1rP = 1r.predict(x_test)

svmP = svm.predict(x_test)

xgbP = xgbc.predict(x_test)

RANDOM FOREST CLASSIFIER
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print("Accuracy :", accuracy_score(y_test, rfP), end="\n\n")
print(classification_report(y_test, rfP))

print("Confusion Matrix")

cm = confusion_matrix(y_test, rfP)

disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()

plt.show()

LOGISTIC REGRESSION

print("Accuracy :", accuracy_score(y_test, 1rP), end="\n\n")
print(classification_report(y_test, 1rP))

print("Confusion Matrix")

cm = confusion_matrix(y_test, 1rP)

disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()

plt.show()

SUPPORT VECTOR MACHINE

print("Accuracy :", accuracy_score(y_test, svmP), end="\n\n")
print(classification_report(y_test, svmP))

print("Confusion Matrix")

cm = confusion_matrix(y_test, svmP)

disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()

plt.show()

XGBOOST

print("Accuracy :", accuracy score(y_test, xgbP), end="\n\n")
print(classification_report(y_test, xgbP))

print("Confusion Matrix")

cm = confusion_matrix(y_test, xgbP)

disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()

plt.show()

5.5.5 DATA FEATURE 5 - COMPANY LOGO

X = np.array(dataSet[ "has_company logo'])

x_train, x_test, y train, y test = train_test split(X, Y, test size=0.33,
random_state=42)

x_train = x_train.reshape(-1,1)
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x_test = x_test.reshape(-1,1)
rf.fit(x_train, y_train)
lr.fit(x_train, y_train)
svm.fit(x_train, y_train)
xgbc.fit(x_train, y_train)

rfP = rf.predict(x_test)
1rP = 1r.predict(x_test)
svmP = svm.predict(x_test)
xgbP = xgbc.predict(x_test)

RANDOM FOREST CLASSIFIER

print("Accuracy :", accuracy_score(y_test, rfP), end="\n\n")
print(classification_report(y_test, rfP))

print("Confusion Matrix")

cm = confusion_matrix(y_test, rfP)

disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()

plt.show()

LOGISTIC REGRESSION

print("Accuracy :", accuracy score(y test, 1lrP), end="\n\n")
print(classification_report(y_test, 1rP))

print("Confusion Matrix™)

cm = confusion_matrix(y_test, 1rP)

disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()

plt.show()

SUPPORT VECTOR MACHINE

print("Accuracy :", accuracy_score(y_test, svmP), end="\n\n")
print(classification_report(y_test, svmP))

print("Confusion Matrix")

cm = confusion_matrix(y_test, svmP)

disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()

plt.show()

XGBOOST

print("Accuracy :", accuracy_score(y_test, xgbP), end="\n\n")
print(classification_report(y test, xgbP))
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print("Confusion Matrix")

cm = confusion_matrix(y_test, xgbP)

disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()

plt.show()

5.5.6 DATA FEATURE 6 - EMPLOYMENT TYPE

X = np.array(dataSet['city'])

newX = ['Unspecified' if x is np.NaN else x for x in X]
X = newX

cv = CountVectorizer()

X = cv.fit_transform(X)

x_train, x_test, y train, y test = train_test split(X, Y, test size=0.33,
random_state=42)

rf.fit(x_train, y_train)

lr.fit(x_train, y_train)

svm.fit(x_train, y_train)

xgbc.fit(x_train, y train)

rfP = rf.predict(x_test)

1rP = 1r.predict(x_test)

svmP = svm.predict(x_test)

xgbP = xgbc.predict(x_test)

RANDOM FOREST CLASSIFIER

print("Accuracy :", accuracy_score(y_test, rfP), end="\n\n")
print(classification_report(y_test, rfP))

print("Confusion Matrix")

cm = confusion_matrix(y_test, rfP)

disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()

plt.show()

LOGISTIC REGRESSION

print("Accuracy :", accuracy_score(y_test, 1rP), end="\n\n")
print(classification_report(y test, 1rP))

print("Confusion Matrix")

cm = confusion_matrix(y_test, 1rP)

disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()

plt.show()
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SUPPORT VECTOR MACHINE

print("Accuracy :", accuracy_score(y_test, svmP), end="\n\n")
print(classification_report(y_test, svmP))

print("Confusion Matrix")

cm = confusion_matrix(y_test, svmP)

disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()

plt.show()

XGBOOST

print("Accuracy :", accuracy_score(y_test, xgbP), end="\n\n")
print(classification_report(y_test, xgbP))

print("Confusion Matrix")

cm = confusion_matrix(y_test, xgbP)

disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()

plt.show()

5.6 CREATING THE ENSEMBLE MODEL

from sklearn.ensemble import RandomForestClassifier

from sklearn.linear_model import LogisticRegression

from sklearn.svm import LinearSVC

from sklearn.pipeline import Pipeline

from xgboost import XGBClassifier

from sklearn.metrics import accuracy score, confusion_matrix,

ConfusionMatrixDisplay, classification_report

from sklearn.model selection import train_test split

from nltk.corpus import stopwords

from sklearn.feature_extraction.text import CountVectorizer

import pandas as pd

import numpy as np

import joblib

from nltk.stem import PorterStemmer

from nltk.tokenize import word_tokenize

import warnings

warnings.filterwarnings('ignore")

nltk_lang = stopwords.fileids()

stop_words = set(stopwords.words(nltk lang))

weightRF

weightLR

weightSV

weightXG =

threshHold = 2

class CustomVotingClassifier:
def __init__ (self) -> None:

R R R R
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self.rf = RandomForestClassifier()

self.1lr = LogisticRegression(max_iter=1000)
self.svm = LinearSVC(C=0.01, random_state=42)
self.svm = Pipeline([("SVM", self.svm)])
self.xgbc = XGBClassifier()

self.porter = PorterStemmer()

def preprocesstexts(self, texts):
preprocess_texts = []
for text in texts:
text = ''.join([sym.lower() for sym in text if sym.isalpha() or sym == '
‘1
tokenized_text = word_tokenize(text)
tokenized_text wo_sw = [word for word in tokenized text if word not in
stop_words]
tokenized_text_wo_sw_stem = [self.porter.stem(word) for word in
tokenized_text_wo_sw]
preprocess_texts += [' '.join(tokenized_text_wo_sw_stem)]
return preprocess_texts

def fit(self, xtrainl, xtrain2, xtrain3, xtrain4, ytrain) :
self.rf.fit(xtrainl, ytrain)
self.lr.fit(xtrain2, ytrain)
self.svm.fit(xtrain3, ytrain)
self.xgbc.fit(xtraind, ytrain)

def predict(self, data):
# self.data = data.apply(self.clean)
result = []
self.rfP = np.array(self.rf.predict(data))

self.1rP = np.array(self.lr.predict(data))
self.svmP = np.array(self.svm.predict(data))
self.xgbP = np.array(self.xgbc.predict(data))

for i in range(len(self.rfP)):
if (self.rfP[i] * weightRF + self.lrP[i] * weightLR + self.svmP[i] *
weightSV + self.xgbP[i] * weightXG) >= threshHold:
result.append(1)
else:
result.append(9)

return result

def classification(self, y test):
print("RF")
print(classification_report(y_test, self.rfP))
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print(accuracy_score(y_test, self.rfP))
print("LR")

print(classification_report(y_test, self.1lrP))
print(accuracy_score(y_test, self.1lrP))
print("SvM")
print(classification_report(y_test, self.svmP))
print(accuracy_score(y_test, self.svmP))
print("XGB")
print(classification_report(y_test, self.xgbP))
print(accuracy_score(y_test, self.xgbP))

CVC = CustomVotingClassifier()
cv = CountVectorizer()

dataSet = pd.read_csv("../Datasets/cleaned-data.csv")

cp = dataSet['company_profile']

d = dataSet['description']

b = dataSet[ 'benefits']

r = dataSet['requirements’]

newCP = ['Unspecified’ if x is np.NaN else x for x in cp]

newD = ['Unspecified' if x is np.NaN else x for x in d]
newB = [‘'Unspecified’ if x is np.NaN else x for x in b]
newR = ['Unspecified’ if x is np.NaN else x for x in r]
X =[]

for i in range(len(newCP)):
X.append(newCP[i] + " "
np.array(X)

dataSet[ 'fraudulent']

+ newD[i]+ + newB[i] + + newR[i])
X

Y

cv = CountVectorizer()

X = cv.fit_transform(X)

xtrain, xtest, ytrain, ytest = train_test_split(X, Y, test_size=0.3,
random_state=42)

print("Training")

CVC.fit(xtrainl=xtrain, xtrain2=xtrain, xtrain3=xtrain, xtraind=xtrain,
ytrain=ytrain)

print("result")

# inputD = input()

# inputD = CVC.clean(inputD)

# CVC.predict(cv.transform([inputD]).toarray())

CVC.predict(xtest)

print(classification_report(ytest, CVC.predict(xtest)))
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Training
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Fig. 5.10 Training the ensemble model

print(classification_report(ytest, CVC.predict(xtest)))
print(accuracy_score(ytest, CVC.predict(xtest)))
CVC.classification(ytest)

k = CVC.preprocesstexts([input()])

newK = ['Unspecified' if x is np.NaN else x for x in k]
print(newK)

asd = cv.transform(newK).toarray()
print(CVC.predict(asd))

All the files we have worked with so far and the completed model are then made into pkl files and
deployed into flask for testing and tuning to make adjustments and see if the model is working as
intended. A pickle is largely used in Python for serializing and deserializing Python object structures.
In other words, it is the act of transforming an object into something like a byte flow in order to store

it in a file/database, retain program state between sessions, or transmit information over a network.

5.7 TUNING THE MODEL

from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import LinearSVC

from sklearn.pipeline import Pipeline

from xgboost import XGBClassifier

from sklearn.metrics import accuracy score

from sklearn.model selection import train_test split
from nltk.corpus import stopwords
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from sklearn.feature_extraction.text import CountVectorizer
import pandas as pd

import numpy as np

import joblib

from nltk.stem import PorterStemmer

from nltk.tokenize import word_tokenize
import warnings

import nltk

nltk.download("stopwords")
warnings.filterwarnings('ignore")

nltk_lang = stopwords.fileids()

stop_words = set(stopwords.words(nltk lang))

rf = RandomForestClassifier()

lr = LogisticRegression(max_iter=1000)
svm = LinearSVC(C=0.01, random_state=42)
svm = Pipeline([("SVM", svm)])

xgbc = XGBClassifier()

porter = PorterStemmer()

dataSet = pd.read_csv("cleaned-data.csv")

cp = dataSet['company_profile']

d = dataSet['description']
b = dataSet['benefits']
r = dataSet['requirements’]

newCP = ['Unspecified' if x is np.NaN else x for x in cp]

newD = ['Unspecified' if x is np.NaN else x for x in d]
newB = ['Unspecified' if x is np.NaN else x for x in b]
newR = ['Unspecified' if x is np.NaN else x for x in r]
X =[]
for i in range(len(newCP)):
X.append(newCP[i] + " " + newD[i]+ " " + newB[i] + " " + newR[i])
gg = X

X = pd.Series(X)
Y = dataSet['fraudulent']

cv = CountVectorizer()

X = cv.fit_transform(X)

xtrain, xtest, ytrain, ytest = train_test split(X, Y, test size=0.3,
random_state=42)

rf.fit(xtrain, ytrain)
lr.fit(xtrain, ytrain)
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svm.fit(xtrain, ytrain)
xgbc.fit(xtrain, ytrain)

rfP = rf.predict(xtest)
1rP = 1r.predict(xtest)
svmP = svm.predict(xtest)
xgbP = xgbc.predict(xtest)

from sklearn.metrics import f1_score
from tqdm import tqdm

def tune():
mA = 0
mF = ©
maxAcc = []
maxF1l = []

for i in tqdm(range(0,11,1)):
for j in (range(0,11,1)):
for k in (range(0,11,1)):
for 1 in (range(0,11,1)):
for m in (range(1,40,1)):

res = []

for g in range(len(rfP)):

if (rfP[g]*i+ 1rP[g]*j + svmP[g]*k + xgbP[g]*1) >= m:

res.append(1)
else:
res.append(9)
acc = accuracy_score(ytest, res)
f = f1_score(ytest, res)
if acc >= mA:
maxAcc.append([i,j,k,1,m,acc])

mA = acc

if £ >= mF:
maxF1l.append([i,j,k,1,m,f])
mF = f

return mA, mF, maxAcc, maxF1l

maxAcc[-1]
maxF1[-1]
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Fig. 5.11 Accuracy and F1 Scores of the tuned model

import csv

heading = ['RF','LR','SV', 'XG', 'MAX"']

with open("maxACC.csv", 'w') as f:
write = csv.writer(f)
write.writerow(heading)
write.writerows(maxAcc)

with open("maxFl.csv", 'w') as f:
write = csv.writer(f)
write.writerow(heading)
write.writerows(maxF1)
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CHAPTER 6

RESULTS AND OBSERVATIONS

6.1. COMBINING ALL FEATURES:

Accuracy and f1-score of all models with combined data as follows.

6.1.1. RANDOME FOREST CLASSIFIER

precision recall fi1-score support

Fig 6.1 Performance of RFC with Combined Features

6.1.2. LOGISTIC REGRESSION

precision recall fi-score support

Fig 6.2 Performance of LR with Combined Features
6.1.3. SVM

precision f1-score support

Fig 6.3 Performance of SVM with Combined Features
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6.1.4. XGBOOST

precision

.95

Fig 6.4 Performance of XGBoost with Combined Features

6.2. PERFORMANCE OF ENSEMBLE MODEL

Now that the ensemble model is created, we are measuring the performance of the ensemble

model.

6.2.1. BEFORE TUNING
In Table 6.1, the performance of our ensemble model is listed. These results are

obtained before tuning.

Table 6.1 Performance of Ensemble model before
Tuning the model

Performance Models
Metrics Custom Ensemble Model
Precision 0.97
Recall 0.72
F1 - Score 0.82
Accuracy 98.4%

6.2.2. AFTER TUNING
In Table 6.2, the performance of our ensemble model is listed. These results are

obtained after tuning the model.
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Table 6.2 Performance of Ensemble model after

Tuning the model

Performance Models
Metrics Custom Ensemble Model
recision 0.93
Recall 0.79
F1 - Score 0.86
Accuracy 98.6%

6.2.3. OVERALL PERFORMANCE

In fig the overall performance of the ensemble model is listed.

Fig 6.5 Performance of Ensemble Model with Combined Features
0 — real job posting
1 — fake job posting

The confusion matrix is drawn for real and job posting in fig.
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Fig 6.6 Confusion matrix of Ensemble Model with Combined Features

6.3. OUTPUT SCREENSHOTS

Now we can look at fig 6.7, 6.8, 6.9 to view how the final product looks like.
6.3.1 INPUT SCREEN

This is the input screen where the user has to enter the inputs of job posting

Fake Job Prediction

Fig 6.7 Input Screen.

70



6.3.2 OUTPUT SCREENS

This screen is displayed when the job posting that the user entered is fake.

Fig 6.8 Fake Job Output Screen

The following page is shown when the job posting is real.

Fig 6.9 Real Job Output Screen
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CONCLUSION

In this project we have created a fraudulent checker tool which uses an ensemble model — combination
of 4 Machine Learning Algorithms - SVM, XGBoost, Logistic Regression, and Random Forest
Classifier. This ensemble model shows an accuracy of 98.6% and F1 score of 0.99 and 0.85 for non-
fraudulent and fraudulent respectively. We first did data preprocessing where the quality of raw data
is checked, cleaned, transformed, and reduced into an understandable format. It has 4 major steps: data
cleaning, integration, reduction, and transformation. Then exploratory Data Analysis takes place.
Exploratory Data Analysis is a core step for discovering patterns and anomalies in the dataset and form
hypotheses based on our understanding of it. Running the input data through the algorithm to correlate
the processed output with the sample output is how the model is trained. The model is modified based
on the results of this association. The four models are compared.

4 ML classification models - Individually, the Random Forest Classifier, Logistic Regression,
XGBoost, and Support Vector Machines are assessed against four separate aspects of the EMSCAD
dataset (Company profile, job description, benefits, and requirements). The cleaned dataset is split into
separate training and testing datasets in such a way that the number of real and fraudulent jobs are
balanced. The 5 models are then trained to differentiate and identify the nature of the jobs. The cleaned
dataset is split into separate training and testing datasets in such a way that the number of real and
fraudulent jobs are balanced. The 5 models are then trained to differentiate and identify the nature of
the jobs. Finally, the Ensemble Model thus created is deployed and connected to a Flask application
which is the interface the user will interact with and enter details which the model will analyze such

as the company’s profile, the job description, benefits, and requirements.
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FUTURE WORK

This project can be further enhanced in the future by hosting the website in cloud and make it so that
it redirects to the source of the job posting if the job posting is real. Another enhancement that could
be done is that this entire application can be connected to cloud and can be added as an extension
where, whenever the client looks at a job posting, the application can alert the user if the job posting
is fake, or the user can manually run the application to find whether the job posting is fake or not. The
application can also list the reasons why the job posting could be fake, and the fake percentage. With

this, the user can easily determine why the job posting is fake and know the fake percentage.
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