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ABSTRACT 

 
In our project, we create a fraudulent checker tool to detect fake job postings using NLP (Natural 

Language Processing) and ML approaches (Random Forest Classifiers, Logistic Regression, Support 

Vector Machines, and XGBoost Classifiers). These approaches will be compared and then combined 

into an ensemble model which is used for our job detector. The goal is to predict actual or fake job 

prediction outcomes with the maximum accuracy using machine learning-based techniques. The dataset 

will be analysed using the Supervised Machine Learning Technique (SMLT) to capture numerous details 

such as variable identification, missing value treatments, and data validation analyses. The complete 

dataset will be cleaned/prepared, and data visualisation will be performed.  The ensemble model is 

created at the end using ML Algorithms like XGBoost, SVM, Logistic Regression, and Random Forest 

Classifier by choosing 4 of the best contributing features. The model produced at the end will be 

implemented in a Flask application for demonstration.
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CHAPTER 1 

 
INTRODUCTION 

 

Many companies, whether well-known or new, prefer to post job applications online. Since it is fast 

and can easily reach a wide variety of capable applicants. But because of this, lots of scams also arise. 

Identifying a fake job application depends on many factors. Sometimes scams can be easily identified 

if the employer asks for money from the employee. But there are also tricky scams that will make the 

user give their details which are more dangerous than losing money. Since anyone can view these job 

postings, freshers who are gullible might fall for these scams easily. 

 

So, to prevent this, the Machine Learning approach is used to classify, whether the job application is 

real or fake. Using our ensemble model, we can take a lot of factors into consideration. The primary 

factor is the description of the job. The other factors include company profile, benefits, requirements, 

etc. With these factors, we can decipher whether the job is real or fake. 

 

1.1 PROBLEM STATEMENT 

Work-from-home jobs have long been a target for scammers, with a 300 percent surge in hiring scams 

prior to 2017, and another increase in frauds until 2020. They have, however, become even more 

vulnerable targets in the aftermath of the COVID-19 issue. Because of the coronavirus outbreak, many 

people have lost their jobs. Finding a new work can be challenging, especially because many non-

essential firms throughout the world have had to cut hours or reduce staff, resulting in mass layoffs. 

Scammers are acutely aware of the fact that some job searchers are in severe need of cash. 

 

 

In recruitment, there is the good, the bad, and the ugly. From fraudsters to copy-paste connoisseurs, 

some of them are even accountable for tarnishing the reputation of "legitimate" recruiters. Scams 

involving job searches and recruiting are not uncommon on LinkedIn. If you receive a communication 

from someone expressing interest in hiring you for a position at their organization, it's most likely a 

real recruiter contacting you about a legitimate job. However, there is always the chance that the 
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recruitment is a hoax. Scammers use LinkedIn to reach out to targets, knowing you’re more likely to 

fall for the scam just because the message is coming through a reputed platform like LinkedIn. 

However, to be on the safer side and avoid falling prey to scams, it is advised that we treat every 

unsolicited offer as a job scam regardless of where it comes from and how well known the platform 

happens to be.  

 

Some recruitment agencies may also use strategies that defy work ethic, like advertising phantom roles 

to make it seem more appropriate on the outside when they already have a new employee in mind. 

Some companies collect CVs to analyze the market while some use that as a disguise to operate dubious 

businesses like illegally selling the data they collect. Pyramid marketing is illegal and has no basis in 

real commerce. For someone to make money with a pyramid marketing scheme, someone else must 

lose funds.  

 

 

 

Therefore, to prevent such scams, the Machine Learning approach is used to classify whether the 

selected job application is real or fake. Using our ensemble model, we can consider several factors. 

The primary factor is the description of the job. The other factors include company profile, benefits, 

requirements, etc. With these factors, we can decipher whether the job posting is real or fake. 

 

1.2 DATA SCIENCE AND SCIENTISTS 

Data science is a discipline that employs scientific approaches, algorithms, processes, and systems to 

extract information from many types of unstructured and structured data, as well as to apply that 

knowledge to a myriad of different areas. As an alternative to computer science, Peter Naur suggested 

data science. The first conference to promote data science was organised by the International 

Federation of Classification. The definition, however, was in flux. D.J. Patil and Jeff Hammerbacher 
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invented the term "data science" in 2008. It has become one of the most popular occupations in the 

sector in less than a decade. Data science is the study of deriving usable insights from data by 

integrating topic knowledge, computer skills, and an understanding of arithmetic and statistics [1]. 

Data science is a mix of arithmetic, business skills, tools, algorithms, and a variety of machine learning 

approaches that aid in the discovery of hidden insights or patterns in raw data that may be utilised to 

make critical business decisions.Data scientists explore and analyze which questions must be answered 

and where relevant data might be found. They are well-versed in business and analytical abilities, as 

well as the ability to mine, clean, and display data. Data scientists are employed by businesses to 

collect, organize, and evaluate enormous volumes of unstructured data.  

 

1.3 ARTIFICIAL INTELLIGENCE 

Any computer or program that mimics human intelligence is known as artificial intelligence (AI). By 

learning in the same way that humans do, AI tries to emulate the human brain. AI improves and learns 

problem-solving skills. Machine intelligence, as opposed to natural intelligence demonstrated by living 

beings, is referred to as AI. The topic is described as the study of "intelligent agents," which are any 

systems that sense their environment and take actions to enhance their chances of attaining their goals, 

according to leading AI textbooks. AI experts, on the other hand, contested this definition, which uses 

the word "artificial intelligence" to refer to robots that mimic "cognitive" functions performed by 

humans, such as "learning" and "problem-solving." 

 

AI is used in intelligent search engines like Google, recommendation systems like Netflix, self-driving 

vehicles like Tesla, speech recognition like Siri and Alexa, and strategic video game systems like chess 

at the highest levels. When robots become more capable, jobs formerly thought to require "intellectual 

aptitude" are removed from the AI equation. Take, for example, optical character recognition. Artificial 

intelligence has gone through a series of ups and downs since its inception as an academic research 

project in 1956 [2], with new approaches, success, and renewed funding. 

 

Throughout its history, AI research has investigated and rejected a wide range of approaches, including 

brain mimicry, modelling human problem-solving abilities, formal logic, enormous information 

libraries, and animal behavior mimicry. In the early decades of the twenty-first century, highly 

quantitative statistical machine learning dominated the field, and this approach has shown to be 

extremely effective, assisting in the resolution of many difficult challenges in industry and academia. 



 

 

 

4 

 

 

 

 

The numerous subfields of AI research are centred on specific goals and methodologies. Logic-based 

information processing, data scheduling, model training, natural language processing (NLP), sensing, 

and the capacity to move and manipulate objects are all traditional AI research aims. One of the 

program's long-term goals is general intelligence (the capacity to solve any issue). AI researchers 

utilise search and optimization algorithms, logic programming, convolutional neural networks, and 

statistics, probability, and economics-based approaches to address these issues. Computer science, 

linguistics, psychology, and a variety of other subjects are all used in AI. 

 

As the hype around AI has grown, suppliers have been scrambling to show how AI is integrated into 

their goods and services. When we talk about AI, we're talking about a single component called 

machine learning. For constructing and training machine learning algorithms, AI requires a foundation 

of specialized hardware and software. Although no single scripting language is connected with 

artificial intelligence, Python, R, and Java stand out. AI systems frequently consume large volumes of 

labelled training data, evaluate, and recognize patterns in the data, and then use these structures to 

predict future states. 

 

 

A chatbot given samples of text dialogues may learn to generate lifelike discussions with people by 

studying millions of cases, while an image recognition computer may learn to recognize and describe 

things in images by evaluating millions of instances. AI typically includes three processes known as 

learning, which refers to the human brain, reasoning, and self-correction. 

 

1.4 LEARNING PROCESS 

Learning processes are an aspect of AI programming that is involved with receiving data and 

developing rules for converting it into valuable knowledge for the process. Algorithms are rules that 

provide computer equipment with stage-by-stage instructions for executing a certain activity. 

 

 

1.5 REASONING PROCESS 

Reasoning processes are an aspect of AI programming that is involved with determining the optimum 
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method to achieve a given goal. 

 

 

1.6 SELF-CORRECTION PROCESS 

This element of AI programming aims to fine-tune algorithms on a frequent basis in order to ensure 

that they give the highest level of accuracy. 

 

1.7 NATURAL LANGUAGE PROCESSING(NLP) 

Machines can read and comprehend human language thanks to natural language processing (NLP). 

Natural language is a user interface that is generated directly from human-written sources, such as 

news agency articles, and it is theoretically possible with an adequate natural language processing 

system. Web scraping, text mining, question answering, and machine translation are all examples of 

simple natural language processing applications. To generate syntactic representations of text, some 

recent methodologies use word co-occurrence frequencies. "Term spotting" search algorithms are well-

known and adaptable, but they are also erroneous; for example, a search for "dog" may only return 

papers that contain the keyword "dog," but articles containing the keyword "poodle" may be 

overlooked. 

 

Lexical affinity approaches assess the emotional content of a material by searching for keywords such 

as "accident." [3] In many circumstances, modern statistical NLP algorithms may incorporate all of 

these tactics, as well as others, and get correct answers at the page or paragraph level. Beyond semantic 

NLP, the ultimate goal of "narrative" NLP is to contain a thorough understanding the basics of intuitive 

thinking. Deep learning systems built on transformers may also be able to generate coherent text by 

2019. 

 

1.8 MACHINE LEARNING 

Machine learning is a method of projecting the future based on historical data. Machine learning (ML) 

is an AI approach that allows machines to understand and learn without having to be explicitly 

programmed. Machine learning is concerned with the production of data-adaptive computer programs, 

as well as the principles of machine learning, such as the construction of a simple learning algorithm 
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in Python. In the training and prediction phase, specialized algorithms are used. It sends the training 

sets to an algorithm, which then uses the training data to create predictions using new test data. 

 

Machine learning can be broken down into three categories. Learning can be classified into three 

categories: supervised, unsupervised, and reinforced. To learn data that must first be tagged by a 

person, a supervised learning algorithm is given both the inputs and the accompanying labelling. In 

unsupervised learning, there are no labels. The deep learning model was given access to it. This method 

must determine how the data in the input is clustered. Finally, reinforcement learning interacts 

dynamically with its environment and receives positive or negative feedback in order to improve its 

performance. Data scientists use a number of machine learning algorithms to identify relationships in 

Python that lead to valuable insights. 

 

Based on how they "learn" about data to make predictions, these algorithms can be classified into two 

categories: supervised and unsupervised learning. Classification is a strategy for guessing the 

classification of supplied data sets. Classification predictive modelling is the process of predicting a 

map function between input variables (X) and different output variables (y). 

y=f(X) 

Where y is the desired output and X is the input variable. We map the input and output in a nonlinear 

fashion.  

 

In statistics and machine learning, classification is an important method in which a computer software 

learns from data input and then uses that learning to categorize new observations. This data collection 

might be classified as bi-class (for example, determining whether the mail is spam or non-spam) 

Examples include voice recognition, fingerprint recognition, identity verification, document 

categorization, as well as other classification issues. [4] The great majority of practical machine 

learning applications make use of Supervised Machine Learning. The objective is to calculate the 

mapping function sufficiently to foresee the target value (y) for new input data (X). Supervised 

machine learning approaches include multiple regression models, multi-class classification, SVMs and 

Decision Trees. The data required for training the algorithms for supervised learning must be labelled 

with correct answers before testing the model.  

 

Problems with classification are a subclass of supervised learning algorithms. The goal of this 

challenge is to develop a basic model that predicts the value of dependent variable attribute based 
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solely on the attribute variables. The main difference between the two tasks is that in categorical 

classification, the dependent feature is numerical. A classification model attempts to infer something 

from observable data. The classifier would attempt to anticipate the results of one or more outcomes 

depending on the values of one or more inputs. The problem is referred to as a classification problem 

when the outcome is a categorization, such as "red" or "blue." 

 

1.9 EXISTING SYSTEMS 

Before choosing out model, we have researched about existing systems. This uses the different 

methods, but the end goals are similar. Upon further research we have found out why these methods 

are lacking. 

 

1.9.1 NAÏVE BAYES CLASSIFIER 

Naïve Bayes is a technique for classifier construction. For training such classifiers, there is no specific 

algorithm, but rather a combination of algorithms.  Naïve Bayes Classifier assumes all values of one 

feature are independent of values of other features. It is often used to build machine learning models 

that can make quick predictions. [5] A probabilistic classifier predicts based on the likelihood of an 

item. Assumes that all predictors are independent, which is seldom the case in real life. It is confronted 

with the zero-frequency issue.  

 

For example, each feature is considered to contribute independently to the probability that the 

vegetable is a carrot, regardless of any possible correlations between the color, shape, and height 

features. In practical applications of Naïve Bayes Classifier, they use Maximum Likelihood, it’s the 

probability of maximum chances of the entity being a class. An advantage of this is that it requires 

small training data for classification. By looping a supervised learning algorithm, you can create a 

semi-supervised training algorithm that can learn from both labeled and unlabeled data. 

 

Examples of Naïve Bayes Classifier: 

Person Classification - If a person is male or female depending on features like height, weight, and 

foot size. 

Document classification - Classifying documents by their content. Like e-mail spam detection. 
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1.9.2 ADABOOST CLASSIFIER 

AdaBoost is a boosting technique. It is an ensemble model with 2 steps. First, a classifier is fit to the 

dataset.  It then fits the same classifier again to the dataset but substantially alters the weight of 

incorrectly classified instances such that subsequent classifiers focus on complicated situations. To 

transform a bad classifier that is just marginally better than a random guess into an excellent classifier. 

Adaptive Boosting is so named because the weights are redistributed to each instance, with bigger 

weights applied to incorrectly assigned instances. [6] A high-quality dataset is required. Before 

implementing an Adaboost algorithm, it is necessary to prevent noisy data and outliers. It is easier to 

use with less need for tweaking parameters but AdaBoost is not prone to overfitting. Adaboost 

technique learns progressively, it is important to note that you have quality data. It is extremely 

sensitive to Noisy data so caution must be taken when using AdaBoost. 

 

1.9.3 K-NEAREST NEIGHBHOURS CLASSIFIER 

A Supervised Machine Learning approach is used in the K-Nearest Neighbor algorithm. KNN 

maintains all data and compares it to newer data to determine the degree of similarity. It assumes that 

the input data and cases in the dataset are comparable and, as a result, places the new instance inside a 

category that seems to be closest to the existing categories. [7] KNN needs a massive amount of 

memory to store all the data. A supervised machine learning algorithm that can deal with both 

classification and regression problems. To resample datasets and fill in missing values. It needs a large 

amount of memory in order to store all of the training data. 

Example: 

Predicting animals - If features of animals are labelled. It compares the input data with the data set, 

then it gives the output based upon the calculation of the K value and nearest neighbors. 

 

1.9.4 MULTI-LAYER PERCEPTRON CLASSIFIER 

MLP is a class of ANN (Artificial neural network). MLP has at least 3 basic layers, Input, Output, and 

hidden layer. It uses a supervised learning technique named backpropagation for training the data. It 

has multiple layers and non-linear activation, so it is different from linear perceptrons. MLP contains 

many perceptrons that are arranged like layers. [8] Perceptrons are like a special scenario of artificial 

neurons that use a certain threshold activation function. MLP was popular in finding applications like 

speech and image recognition, machine translation, etc. 
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1.9.5 DECISION TREE CLASSIFIER 

The decision tree has nodes that specify an attribute, and each branch denotes the one in many values 

for that attribute. Leaf represents the class labels. The algorithm is that the classification starts at the 

root node and each node splits into two or more subtrees according to a condition, at the end a new 

node is created. [9] This process carries on till all data is classified. It works in a top-down manner. 

There are lots of possibilities to measure the split of the subtrees. When the user is missing one or two 

inputs, the model is capable of identifying whether the job posting is fake or real.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

A review of the literature is a piece of writing that attempts to summarizes the most essential 

components of current understanding of methodological procedures as they relate to a specific topic. 

It is a secondary source that discusses published information in a certain subject area, as well as 

expertise in that subject field during a specified time period. Its ultimate goal is to keep the reader up 

to date on the reviewed literature, and it also serves as a foundation for other objectives, such as future 

studies that may be required in the field. It may just be a list of references that appears before a 

proposed investigation. It usually follows a pattern and includes summary as well as synthesis. We 

write a summary to help us understand a long text more quickly while yet keeping the meaning. It 

could provide a new perspective on existing material, combine new and old viewpoints, or track the 

field's intellectual growth, including major debates. Depending on the context, a review of the literature 

may examine the materials and direct the audience to the most current or relevant ones. 

 

2.1 LITERATURE REVIEW 1 

 

 

Performs online job failure prediction on Google datasets to improve online prediction models and 

resource utilization by comparing various prediction models. OS-ELM is used to predict job status by 

collecting real-time data according to the sequence of arrival. It reduces storage space and resources 

used in the cloud by intelligently identifying job failure. Due to its fast-learning speed and good 

generalization it takes very little time to update the model while providing higher prediction accuracy 

and better false-negative performance when compared to other existing models. The training and 

testing time for SVM and ELM models are much shorter than OS-ELM’s and with better offline 

prediction performance. Accuracy, precision, and false-negative rate with prediction accuracy of 93% 

and updates the model in 0.01s 
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They are analyzing the different states a task could end up at. For example, it could be successful and 

go to finished state, the job could be killed, or evicted or the job could fail and resubmitted. There are 

lots of jobs are assigned to a particular system, and the system schedules the jobs according to its 

priority. They analyzed the status of jobs, from their research they have found that about 60% of the 

jobs are successful, and 40% are either evicted, failed, or gets killed, thus leading to job termination. 

ELM (Extreme Learning Machine) is a learning algorithm which can solve single hidden layer neural 

network. How ELM works is that it inputs random weights and offset and gets the output in output 

layer. 

 

OS-ELM is a modification of ELM which has faster learning speed. Its an online incremental 

algorithm, it can deal with the sequential arrival of data. Unlike ELM, OS-ELM does not reuse learned 

data for updating the model. They are gathering the required data from google clusters [38]. The logs 

of job submission are gathered in real-time in cloud. The features are extracted from the pre-processed 

data.  

The data from cloud are cleaned if: 

The job didn’t get executed after being submitted for 20 minutes. 

The job hasn’t been completed at the end of trace record. 

The job finished before it has been scheduled. 

Data went missing. 

Job started before traces were recorded. 

 

With the static characteristics the jobs are extracted in data preprocess, and this used as a feature vector. 

With the extracted features, the data is split into two parts, test data and training data in the ratio 1:3. 

The training data is used to train the model to predict the status of the recent jobs. If the model predicts 

that the job will be successful, then the job continues. If the model predicts it to be in termination state, 

the job terminates and resubmitted, waiting to be scheduled. OS-ELM model adapts the strategy of 

fast learning in predicting and model updating to provide low cost with best performance.  

The method that is used to predict the state has two phases: initialization phase and the sequential 

learning phase [39, 40]. 

 

SVM is usually used for small-scale data for classification problems [41, 42]. SVM maps the problem 

to high dimensional space. The advantage of SVM is that global optimization, strong generalization 



 

 

 

12 

 

 

 

ability and small sample [43]. OS-SVM is an advanced version of SVM, which does online rapid 

incremental learning [44, 45]. This works in offline phase. When training the model, they have 

discovered that ELM is faster when compared to SVM and time taken for ELM training and testing is 

100 times shorter when compared to OS-ELM. From this they can draw a conclusion that offline 

models work better than online models since offline uses large samples at a time to build the model, 

where online models use small samples at first and perform the model update training as data samples 

reach. However, online models time performance is better when compared to offline models. 

 

From the testing and training they have observed that OS-ELM model is suitable for online predictions. 

The reasons are: 

i) SVM and ELM are offline models which requires more storage space since the model needs to 

train from existing samples. 

ii) OSELM has an advantage of learning faster, updating the model takes about 0.01s, where OS-

SVM takes about 22.04s for updating. 

iii) OS-ELM model is more stable when compared to OS-SVM because while updating the model OS-

SVM needs to retain the samples that violated the conditions for next iteration, wherein for OS-

ELM the hidden-layer weights and parameters are randomly chosen, and feed forward neural 

network is minimized. 

Thus, in conclusion, time performance and prediction of OS-ELM is superior to other models. It 

can reduce the storage space by identifying job failure and reduce the resource wastage in cloud. 

 

2.2 LITERATURE REVIEW 2 

 

 

Focuses on obtaining deep feature representations of legal and fraud transactions from the aspect of 

the loss function of a deep neural network. Uses Full Center Loss and Angle Center Loss on two big 

datasets of credit card transactions: one public Kaggle dataset and the other a private dataset. FCL 

considers both distances and angles among features and can comprehensively supervise deep 

representation learning. Feature engineering is used to extract informative features of transaction 
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behaviors and ACL is an improved SL used here. Though this model ensures stability it does not 

address the concept of drift problems. The performance metrics used to evaluate the model here are 

accuracy, precision, and recall and achieved an accuracy of 82.2% 

 

2.3 LITERATURE REVIEW 3 

 

Uses Natural Language Processing to analyze sentiments and patterns in job postings on LinkedIn 

using Beautiful Soup. Trained the model as a Sequential Neural Network using the GloVe algorithm 

and uses the EMS CAD dataset. The Global Vector Model Algorithm used is very realistic and can 

determine if the job is real or fake just by extracting the job description and feeding it into the model. 

Sentiment analysis can be improved by also implementing Word2Vec along with the GloVe algorithm. 

The model was compiled for 10 epochs with a batch size of 64 and achieved 97.58% validation 

accuracy. 

 

2.4 LITERATURE REVIEW 4 

 

 

Analyzes all possible aspects of employment scams by exploring EMS CAD dataset that contains real-

life legitimate and fraudulent job recruitment ads. Trains 6 popular WEKA classifiers using a bag of 

words modelling and evaluates their performances to generate a ruleset which is then converted into 

binary feature vectors and tested against the same WEKA classifiers. The use of various analyses helps 

improve automated anti-scam solutions by ATS to train classifiers and gain a deeper knowledge of the 

problem’s characteristics. The ruleset does not focus on user behavior, company & network data, and 

user-content-IP collision patterns and lacks graph modelling. Empirical Analysis, stop word filtering 

(excluding articles and prepositions) and used k-fold cross-validation strategy to evaluate the model. 
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The data set they are using is EMSCAD. For the data cleaning they take only the key words while 

removing the stop words [13] like “the, an, with, etc.…”. after this they have used another bow (bag 

of words) modelling to train WEKA classifiers [14]. For training and testing they take features named 

as job description, company profile, requirements, and benefits. After cleaning of data is done, they 

use machine learning algorithm named as ZeroR, OneR, Naives Bayes, J48 decision trees, random 

forest, and logistic regression. Then they compare the results.  

 

With these rules they separate the dataset. This new model can scale up large dataset as it requires less 

storage. The model is again tested with the six classifiers and observed the results. The data was 

separated into training and test data using k-fold cross validation technique. In this new model almost, 

all classifiers could do better performance when compared to bow. All classifiers are increased in 

accuracy by 2%-13%. Only random forest showed decline of 0.5%. now they have chosen random 

forest classifier as their test. They have concluded mentioning that features that are related to company 

like short company profile or lack of company logo and profile are very effective. On the contrary, 

legitimate jobs are found with short descriptions.  

 

As the final step they have tested the random forest classifier that has been trained on empirical ruleset 

against the unbalanced 17,880 data. The model showed an accuracy of 89.5%. the precision and recall 

score for non-fraudulent was 0.986 and 0.903 accordingly. But fraudulent has 0.282 and 0.751. Since 

the dataset is highly imbalanced, these results are to be expected. From observations they have 

concluded that with balanced dataset the model can produce an accuracy up to 90%. So according to 

the results, one fraudulent could be marked as non-fraudulent out of 10 fraudulent. 

 

Their future goal is to employ graph modeling and explore connections between fraudulent job ads, 

companies, and users. They would also like to make their employment fraudulent tool to be of 

commercial use. 

 

2.5 LITERATURE REVIEW 5 
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In this paper, they have taken a text classification problem and compared various machine learning 

algorithms like SVM, Multinomial Naive Bayes, Decision Tree, K Nearest Neighbors, and Random 

Forest. The data set they sued contains real and fake jobs. They cleaned the dataset and pre-processed 

the text using TF-IDF for extracting the features. They split this data into two parts, train data and test 

data. Evaluation metrics used are precision, recall, f-measure, and accuracy. For each classifier, results 

were summarized and compared with others. The reason they are doing this research is to measure the 

performance of most used ML techniques on a text classification problem and prove a comparison 

between them.  

 

The theory with Multinomial Naive Bayes is that to predict the probability of an event based on 

previous knowledge [16]. The Naive Bayes classifier proved their efficiency in text classification 

problems [17]. This works on solid independent assumptions; this means one assumption does not 

affect the others. Given n assumptions, this model makes 2n! independent assumptions. This also paves 

way on understanding each assumption separately since they are not dependent on each other [18]. 

There are two event models: the multi-variate Bernoulli, and the Multinomial Naïve Bayes (MNB). 

They are working on MNB. MNB gets the word frequency in documents [19]. 

 

Support Vector Machine (SVM) is a learning model by Vapnik. It can learn functions from labelled 

vectors [20]. The job of SVM is to find the optimal hyperplane by comparing the nearest two different 

classes data points, so it can generalize the training pattern [21]. 

 

Decision Tree Classifier (DT) is commonly used ML for classification and predictions. DT works with 

nodes and leaf. It has a tree structure. The top node is the root node, every other node is either a decision 

node or a leaf node. Decision node is the one which sets rules or tests are carried out on an attribute 

and classifies the value accordingly. While lead node just mentions the class of data that is it is 

classified into. Decision node can classify values into leaf node, or it can also have sub-tree. DT goes 

from top to bottom, starts at root node and works it way towards the leaf nodes [22]. 

 

K- Nearest Neighbors (KNN) is used mainly for its simplicity and efficiency [23-25]. It finds the 

Euclidean distance and assesses individual features. KNN predicts depending on a number that 

represents the nearest training example. It stores all the training samples and chooses the k nearest 

sample from the classified vectors and determines the class of the new data. 
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Random Forest (RF) is an ensemble of Decision Trees. So each DT provides one output and votes are 

conducted, the class with most votes becomes the prediction of RT [26]. To create a RF one has to 

create a bootstrapped dataset that is the same size as the original. To create it we randomly select data 

from original dataset. Few instances are missed from original dataset, these are called Out Of Bad 

Dataset (OOB), so each bootstrapped dataset has its own OOB. Then DT is created. The difference is 

that we choose only one feature and not the entire sample. This is the reason why RF is more effective 

than individual DT. In test phase, we take the OOB dataset and check if the predicted class is correct 

or not. 

 

They have used Google Collaboratory to code. The data was uploaded and pre-processed. Then feature 

extraction is done. With this clean data we split it into train data (70%) and test data (30%). The dataset 

they are using is from Kaggle [27]. This has about 18K entries and 17 attributes and one class with 

binary values. 

 

Now the features are getting extracted, this step is essential because its suitable for learning algorithms 

[28]. Converting text data to vector. Vector is a numeric value corresponding to each term appearing 

in a text [29]. They are using TF-IDF to convert text to vectors [30]. It takes the most frequent words 

in the document and use them as features vector. TF-IDF gives higher weight to important terms from 

the document. Now the data is converted to Term Vector Model (TVM).  

 

The evaluation metrics they are using are accuracy, true positive rate, precision, recall, and F1 score. 

After they have trained the models, they constructed a confusion matrix and evaluation matrix. It is 

observed that Random Forest has highest accuracy of 98%. The second highest are SVM, DT, KNN 

with an accuracy of 97% and highest F1-score of 99.0. In terms of highest recall, its DT followed by 

RF and KNN. Meanwhile highest precision is achieved by MNB, SVM, and RF. Although MNB has 

lowest accuracy, it might be possible because of the state of nature stated in [31]. Finally, they have 

concluded that, for text classification problem Random Forest Classifier is best. 

 

2.6 LITERATURE REVIEW 6 
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They have used machine learning classification to avoid fake post for jobs in internet. The classifiers 

are tested and compared with each other, and they identify the best employment scam detection model. 

They can detect fake job posting in enormous number of job posts. They have used mainly two 

classifiers – single classifier and ensemble classifiers. With experiments its found that ensemble model 

is better at detecting scams when compared to single classifiers. 

S 

The classifier identifies fake job postings from a large set of advertisements and alerts the user. They 

consider a supervised machine learning to get this job done. The job of a classifier is to map the input 

data with target class while considering training data. The classifiers are broadly categorized to single 

classifier-based prediction and ensemble classifier-based prediction.   

 

Single classifier-based prediction: 

The single classifiers they have used are: 

a. Naive Bayes Classifier 

b. Multi-Layer Perceptron Classifier 

c. K-nearest Neighbor Classifier 

d. Decision Tree Classifier 

 

Naive Bayes classifier is based on supervised learning which uses Bayes Theorem [33,34]. The 

classification made by this classifier is quite effective in practice even if its probability of estimation 

is inaccurate. Naïve bayes works well if features are independent of each other or features are 

completely functionally dependent. The accuracy of this classifier depends on the information loss due 

to the assumption of independent features. There is no single algorithm for training such classifiers, 

but rather a collection of algorithms. An advantage of this is that it requires small training data for 

classification. By looping a supervised learning algorithm, you can create a semi-supervised training 

algorithm that can learn from both labelled and unlabelled data. 

Examples of Naïve Bayes Classifier: 

• Person Classification: 

If a person is male or female depending on features like height, weight, and foot size. 

• Document classification: 

Classifying documents by their content. Like e-mail spam detection. 
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By including optimized training parameters, multi-layer perceptron can be used as supervised learning 

tool. The number of hidden layers and number of nodes in each layer can differ based on the problem. 

The factor which decides the class is dependent on training data and network architecture [35]. MLP 

is a class of ANN (Artificial Neural Network). MLP has at least 3 basic layers, Input, Output, and 

hidden layerMLP was popular in finding applications like speech and image recognition, machine 

translation, etc. 

 

K-Nearest Neighbor Classifiers is also known as lazy learner. The job of this classifier is to store all 

the training data. And when the test data is given the classifier maps the nearest class. The classifier 

takes k number of objects as nearest object. The challenge of this classification is that it relies on 

choosing the value of k [36]. KNN is also known as a lazy learner algorithm because it does not learn 

from the dataset, it just stores all values and finds similarities. The advantage is that it's simple to 

implement and it is robust to noise. It is directly proportional to the size of training data, it's more 

effective with large training data. 

 

Decision Tree (DT) has a tree like structure using nodes [37]. Only one root node can exist in one DT. 

The other nodes are either leaf node or a non-leaf node. DT makes decision using decision node, which 

splits the data into its desired class. There are lots of possibilities to measure the split of the 

subtrees. Since it is a top-down approach, a small mistake made at the beginning can largely impact 

the performance since each iteration is based on the first. 

 

Ensemble Approach based Classifiers: 

The logic behind ensemble models is that it’s better to use many mediocre models than one good 

model. It combines many single models and creates an ensemble model. Examples of ensemble model 

is Random Forest (RF), AdaBoost [38]. 

 

The target of this study is to detect whether a job post is fraudulent or not. Identifying and eliminating 

these fake job advertisements will help the job seekers to concentrate on legitimate job posts only. In 

this context, a dataset from Kaggle is employed that provides information regarding a job that may or 

may not be suspicious. Before they fit this data to a model for training, they did some pre-processing 

to dataset. They remove null values, stop-words, irrelevant attributes are also removed and extra space 

removal. With this cleaned data they can obtain feature vectors. They have used Naive Bayes 

Classifier, Decision Tree Classifier, Multi-Layer Perceptron Classifier, K-nearest Neighbor Classifier, 
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AdaBoost Classifier, Gradient Boost Classifier and Random Tree Classifier for classifying job post as 

fake or not.  

 

To maximize the performance, they are not using default parameters. Then training the model takes 

place. After these tests are conducted. For ensemble models it is observed that Random Forest 

performance is better. RF gives an accuracy of 98.27%, Cohen-kappa score as 0.74, F1-score 0.97, 

MSE 0.02. Therefore, they have concluded that Random Forest is the best candidate for this fake job 

prediction.   
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CHAPTER 3 

 
 

SYSTEM ARCHITECTURE AND DESIGN 

 
The arrangement of software components on devices is referred to as software system architecture. 

Two components that are closely connected can also be co-located or deployed on distinct machines. 

The placement of the software components will also have an impact on the performance and 

dependability of the system. The purpose of having a system architecture is to design comprehensive 

solutions centered on logically connected and consistent principles, ideas, and attributes. Software 

architecture is a type of system blueprint that is essential for understanding, negotiation, and 

communication among all stakeholders (users, customers, management, etc.). It makes the entire 

system easier to grasp as well as the decision-making processes very efficient. The process of 

developing the framework, product innovation, components, protocols, and information for a system 

in order to meet defined criteria is known as systems design. Systems design may be described as the 

application of systems approach to the creation of products. When a system can fulfil the needs of the 

end user, it is considered reliable.  

 

When building a system, we might as well have prepared to implement a selection of characteristics 

and services. If the platform can satisfy all such features without having to wear out then the structure 

can be deemed reliable. A fault-tolerant system is something that can continue operating reliably in 

the event of problems. Faults are mistakes that occur in a specific element of the system. The 

occurrence of a malfunction does not ensure that the system will fail. Failure occurs when a system is 

unable to operate as intended. It can no longer deliver certain services to end consumers. Availability 

is a feature of a system that seeks to maintain an agreed-upon level of organizational performance, 

often known as uptime. In order to service the user's requests, a system must offer high availability. 

 

The objective or appearance of a system architecture and design requirements specification may differ 

depending on the project, but they all serve the same fundamental function. That is, to guarantee that 

the software's owners and developers have a solid awareness of its future specifics and project 

estimates. Project estimations are a crucial aspect of project planning that include cost estimates, 

resource allocation, and project length. Knowing what technological requirements your program 
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requires might assist you in determining these parameters more precisely. 

 

 3.1 EXISTING SYSTEMS 

 

 

3.1.1 CHALLENGES IN THE EXISTING SYSTEM 

Naive Bayes Classifier assumes that all predictors are independent, rarely happening in real life. 

Adaboost Classifier needs a quality dataset. Noisy data and outliers have to be avoided before adopting 

an Adaboost algorithm. K-Nearest Neighbour Classifier Require high memory – need to store all of 

the training data. Sensitive to the scale of the data and irrelevant features. Multi-Layer Perceptron 

Classifier requires tuning a number of hyperparameters such as the number of hidden neurons, layers, 

and iterations. Decision Tree Classifier - A small change in the data can cause a large change in the 

structure of the decision tree causing instability. 

 

3.2 PROJECT REQUIREMENTS 

Requirements are a description as to what should be done. They are statements about how the system 

should function, or about a system property or characteristic. When requirements are ambiguous, 

initiatives run the risk of failing to provide what is required. Missed criteria, at the very least, 

necessitate rework. There will very certainly be negative consequences for both the schedule and the 

budget. 
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3.2.1 FUNCTIONAL REQUIREMENTS 

Functional requirements are requirements that characterize the product's behavior. These requirements 

would be the requirements that the end user requests for as the basic facilities for the system to provide. 

As part of the contract, all of these features must be included into the system. These are depicted or 

stated in the form of input to the system, operation executed, and intended outcome. In contrast to non-

functional needs, they are essentially the user-specified criteria that can be seen immediately in the 

finished product. This part of the document talks about the developmental potential of the software 

product's needs. It is the initial phase in the process of requirements analysis. It enumerates the needs 

of a certain software system. The specific libraries such as sk-learn, Pandas, NumPy, matplotlib, and 

seaborn are detailed below. 

 

3.2.2 NON – FUNCTIONAL REQUIREMENTS 

Explains the ambient conditions or attributes necessary for such a product to function properly. These 

are the quality restrictions that the software must meet in accordance with the project contract. The 

significance or depth to which these aspects are incorporated varies depending on the project. Non-

behavioral requirements are another name for them. A non-functional requirement establishes a 

software system's quality attribute. It restricts how the software system satisfies the functional 

requirements. Assists you in testing the software's performance. Non-functional requirements – 

describe the environmental circumstances or characteristics required for the product to perform 

properly. An example would be equipping the model to possess time constraints to process every 

request that comes in to be done within 10 seconds. This also includes Testing such as Performance, 

Stress, Usability, Security testing, etc. that are performed on the model to ensure the absolute best for 

the users. Thereby, allowing them to have a very smooth experience and leave them satisfied with the 

results of their online job search. 

 

3.2.3 TECHNICAL REQUIREMENTS 

When working on a project or developing software, technical requirements explain the technical 

features and difficulties that must be addressed in order for the project or product to function and 

execute properly. These technological characteristics might allude to issues such as performance 

difficulties, software dependability, and ease of access. Technological requirements, in essence, serve 
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as solutions to technical problems. Technical requirements are crucial because they define how 

software should perform and behave. This assist both developers and users in determining the optimal 

method to utilize the product. A document with properly specified specs aids in the creation of a project 

or software with a good implementation procedure. This is referred to as technical requirement. 

 

TO BUILD THE MODEL 

Software Requirements: 

• Python 3.7.x 

• Anaconda/Google Colab/VSCode (Any code editor with Python support) 

• Windows/Linux/MacOS (Any OS that supports the above requirements) 

 

Hardware Requirements: 

• Any modern Dual Core CPU (Intel Celeron+/ AMD Athelon+) 

• 4GB+ RAM 

• 1GB HDD space 

 

TO DEPLOY AND RUN THE MODEL 

Software Requirements: 

Python 3.7.x 

Flask 

VSCode/Sublime Text (Any Text Editor of your choice) 

 

Hardware Requirements: 

• Any modern Dual Core CPU (Intel Celeron+/ AMD Athelon+) 

• 4GB+ RAM 

• 1GB HDD space 

 

3.3 PROPOSED SYSTEM 

The proposed method is to build a machine learning model to classify the real or fake job posting to 

overcome this method to implement a machine learning approach. The proposed method is to build a 

machine learning model to classify a real or fake job posting. Many systems use neural networks to 
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predict such cases, but if the data has any noise or error, there is a possibility of overfit. So, the data 

must be as clean as possible, which is difficult in practical applications. Logistic Regression and 

Random Forest Classifier are less complex than Neural Network based models hence they are less 

susceptible to overfitting. LSTM while having better memory retention than RNN, it is extremely 

inefficient and requires a lot of time for processing. Random Forest Classifier is much more time 

efficient. In Random Forest Classifier, we don’t have to clean the training data as much as RNN. The 

logic is that an ensemble of many mediocre models would still fare better than a single good model. 

Because of this, Random Forest Classifier is less prone to overfit. The dataset is first preprocessed and 

the columns are analyzed to see the dependent and independent variables then different machine 

learning algorithms would be applied to extract patterns and to obtain results with maximum accuracy. 

 

3.4 DESIGN OVERVIEW 

In design overview, we go through each part of the algorithm, here we briefly go through data 

preprocessing, EDA, comparison, training the model, tuning and testing. 

 

3.4.1 DATA PRE – PROCESSING 

The raw data is examined for quality, cleaned, converted, and reduced to a comprehensible format. It 

is divided into four primary steps: data cleansing, integration, reductions, and transformation. This is 

where NLP will enter the picture. Before modelling, the data is cleaned by eliminating punctuation, 

stop words, and digits, which do not really provide information about the target. We eliminate stop 

words that feature articles such as an, a, and the from every text in the dataset, leaving only the 

keywords for the analysis step. For the text characteristics, we calculate the difference between the 

mean number of words in fake and real job listings. The total number of words for the company profile 

and requirements is then determined. 

 

3.4.2 EDA 

Exploratory Data Analysis also known as 'EDA’ is a critical stage in identifying trends, patterns, 

insights and anomalies in a dataset and create a hypothesis based on our current understanding of it. 

EDA is not a formal procedure with a set of rules to follow. EDA is, above all, a state of mind. During 

the early stages of EDA, now you just should feel comfortable to study any notion that comes to mind. 

A few of these concepts will come to fruition, while others will fail. As you continue to explore, you'll 

come across a few really fruitful regions that you'll ultimately write up and transmit to others. Even if 
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the queries are handed to you on a silver platter, EDA is an important part of any data analysis since 

data quality must be regularly assessed. Data cleansing is just one application of EDA: you ask whether 

your data meets your needs. Through exploratory data analysis, we identified which of the 18 features 

were particularly frequent among fake job listings. We use a pie chart to analyze the percentage 

distribution of each feature with the fraudulent output. Using this strategy, we discovered that the 

majority of the fraudulent job postings lacked a firm profile as well as valid job descriptions and 

requirements. The model is trained by passing the input data through the algorithm and comparing the 

processed output to the sample output. The correlation finding is used to adjust the model. 

 

3.4.3 COMPARING THE FOUR MODELS 

Four machine learning classification models - Random Forest Classifier, Logistic Regression, 

XGBoost, and Support Vector Machines are separately assessed by evaluating them against four 

unique EMSCAD dataset features: company profile, job description, benefits, and requirements. These 

characteristics were chosen specifically because they identify real job postings from fake ones. 

 

3.4.4 TRAINING 

The cleaned dataset is split into separate training and testing datasets in such a way that the number of 

real and fraudulent jobs are balanced. The 5 models are then trained to differentiate and identify the 

nature of the jobs. 

 

3.4.5 TESTING AND PERFORMANCE MEASUREMENTS 

The 4 ML models and the Ensemble model are tested against four features of the dataset based on 

which their performances are evaluated by 3 metrics: Precision and Recall which is then used to 

calculate the F1-score that determines the accuracy of the model created. 

 

3.4.6 TUNING THE MODEL 

We must now tweak the model that we have developed. The practice of providing weights for every 

model is known as tuning. As a result, the accuracy of each model's output is weighted differently. 

This manner, we may take advantage of the benefits of each model while without detracting from the 

efficiency of the ensemble classifier. We use the brute force strategy, assigning different weights to 

every classifier and then evaluating their performance; the model achieves the best results with weights 

of 10,10,10,10 to every classifier and a threshold of 20. 
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3.4.7 DEPLOYMENT 

The Ensemble Model thus created is deployed and connected to a Flask application which is the 

interface the user will interact with and enter details which the model will analyze such as the 

company’s profile, the job description, benefits and requirements. 

 

 

3.5 SYSTEM EVOLUTION DESCRIPTION 

We research and test various Machine Learning Classification models and came to the following 

conclusions: 

• Naive Bayes - It's frequently used to build machine learning models that can make quick 

predictions. A probabilistic classifier predicts based on the likelihood of an object. Assumes 

that all predictors are independent, which seldom occurs in practice. It has an issue with zero-

frequency. 

• Adaboost Classifier - To improve a poor classifier that is marginally better than a random guess 

to a good classifier. It is known as Adaptive Boosting because the weights are reassigned to 

each instance, with larger weights allocated to erroneously assigned instances. Needs a quality 

dataset. Noisy data and outliers have to be avoided before adopting an Adaboost algorithm. 

• K-Nearest Neighbor Classifiers - A supervised machine learning method that can address 

classification as well as regression issues. To fill up missing values and resample datasets. 

Requires high memory and needs to store all of the training data.  

• Multi-Layer Perceptron Classifier - A feedforward artificial neural network produces a set of 

outputs based on a set of inputs. It is distinguished by many layers of input nodes that are 

connected in a directed graph between the input and output layers. A number of 

hyperparameters, such as the number of hidden neurons, layers, and iterations, must be tuned. 

• Decision Tree Classifier - To successfully handle non-linear datasets, it generates the 

categorization model by constructing a decision tree. It manages all forms of data well. A small 

change in the data can cause a large change in the structure of the decision tree causing 

instability. 
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3.6 SYSTEM ARCHITECTURE DIAGRAMS 

An architectural diagram is a graphical representation of how software system components are 

physically implemented. It displays the software application's overarching architecture, as well as the 

relationships, constraints, and boundaries that exist between each component. 

 

3.6.1 ARCHITECTURE DIAGRAM 

The architecture diagram is a simple and clear representation of how the model functions to process 

the data, create, train, test and tune the model that will detect and differentiate fraudulent and real job 

postings to help users avoid getting scammed while searching and applying for jobs online. The 

essential feature of such a diagram would be that it arranges and clearly depicts the system's users and 

high-level dependencies. It merely takes a couple of minutes to draw the diagram when the concept 

and work is completed. This diagram is an important step for app and software developers to show the 

basic layout of the system by splitting functional regions into strata. It demonstrates how a normal 

software system could interact with its users, other computers, information sources, and services. 

 

 

Fig 3.1 System Architecture 

 

 

3.6.2 SEQUENCE DIAGRAM 

The sequence diagram gives a process view of the model used and is presented in the form that is 

similar to a flow chart diagram. It describes the sequence of data and the communication between the 

input and outputs of the system components. It reflects the functional flow of the system and clearly 
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depicts the flow of data within the system for easy understanding of the model and its internal working. 

The dataset is first loaded into the code editor and thoroughly analyzed to see if it is a balanced one or 

not. It is then checked for recurrent patterns, checking if there is any missing data, values, garbage 

values, stop words etc. The dataset undergoes pre – processing and cleaning it is saved as a new dataset 

which is again loaded into the editor. Now, comes the part where we play with various machine 

learning models using our dataset and its features. Each of the models are tested, one by one and their 

performance results are saved. As the next step, we decide to make a combination of all the models we 

just tested in order to obtain an ensemble model capable of making highly accurate predictions to help 

protect and inform users of fraudulent job postings online and allow users to find only the real and 

authentic job listings. This process is very hassle free as all it requires is for the user to enter just four 

details regarding the job listing, they want to check. First, enter the name of the company, the 

description they have provided, the qualifications for the position they are recruiting for and the 

benefits the company provides for the hires. 

 

 

Fig 3.2 Sequence Diagram 

 

3.6.3 ACTIVITY DIAGRAM 

An activity diagram, similar to a data flow diagram, visually depicts a series of actions or the flow of 

power in a system. In business process modelling, activity diagrams are frequently employed. They 
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may also use a use case graphic to illustrate the stages. Modeled activities can be both sequential and 

concurrent. The activity diagram aids in visualizing the flow of work from one action to the next. It 

emphasized the flow state and the sequence in which it happens. The flow can be in a sequence, 

branching, or concurrent, and it has forked, joined, and so on to cope with such flows. An object-

oriented flowchart is another name for it. It includes activities that are made up of a series of actions 

or processes that are used to model the behavioral diagram. 

 

 

 

Fig 3.3 Activity Diagram
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CHAPTER 4 

 

METHODOLOGY 

 
The dataset is cleaned by removing stop words, punctuations etc. From the exploratory data analysis, 

the distribution of real and fraudulent jobs is imbalanced. The dataset is split into train and test sets 

such that the datasets are balanced to avoid bias towards any of the classes. From the dataset, four 

distinct features are taken – Job Description, Job Requirements, Job Benefits and Company Profile and 

first, individually tested with the Random Forest Classifier, Logistic Regression, Support Vector 

Machines and XGBoost models. The individual performances of each model against each feature were 

determined by calculating their F1 Scores from Precision and Recall metrics of each feature for their 

respective models. To obtain a model that can make predictions with the highest accuracy, the 4 models 

tested are combined to create our very own Ensemble model.  

 

4.1 OBJECTIVE 

The goal is to develop a machine learning model that can classify real or fake jobs. We create an 

ensemble model with Random Forest Classifier, Logistic Regression, SVM, and XGBoost for each 

feature. For each feature, a classifier is chosen in such a way that it gives maximum accuracy. The 

final model is implemented through Flask. 

 

4.2 PROJECT GOALS 

• Exploration data analysis of variable identification 

o Loading the given dataset 

o Import required libraries packages 

o Analyse the general properties 

o Find duplicate and missing values 

o Checking unique and count values 

• Uni-variate data analysis 

o Rename, add data, and drop the data 

o To specify data type 

• Exploratory data analysis of bivariate and multivariate 
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o Plot diagram of pair plot, heatmap, bar chart and Histogram 

• Method of Outlier detection with feature engineering 

o Pre-processing the given dataset 

o Splitting the test and training dataset 

o Comparing the Decision tree and Logistic regression model and random forest, etc. 

• Comparing algorithms to predict the result 

o Based on the best accuracy 

 

4.3 SCOPE: 

The main Scope is to detect fake job postings, which is a classic text classification problem with the 

help of NLP and machine learning algorithms. It is needed to build a model that can differentiate 

between a “Real” job and a “Fake” job. 

 

4.4 TECHNICAL MODULES 

We have mentioned the modules that our project has. This gives a brief description of all the modules 

and explains in detail. 

 

4.4.1. DATA PREPROCESSING 

Dataset: 

The dataset contains 17880 entries with 18 features. The dataset is sent for the cleaning process. Fig 

4.1 lists all the features available in the dataset. Fig 4.2 mentions the data distribution between the two 

classes before data is being cleaned. 

 

Fig 4.1 List of features in dataset 
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Fig 4.2 Distribution of dataset for fraudulent and non-fraudulent before cleaning 

 

Cleaning: 

We first separate all the features into 4 parts. 

• Binary type: 

Features like telecommuting, has_company_logo, and has_questions are binary types, with 

only two answers, true is represented as numeric 1 and false is represented as numeric 0. 

• Category type: 

Features like department, industry, function, employment_type, required_experience, and 

required_education are bounded by certain categories.  

o Department has a wide range like Marketing, Sales, R&D, Production, etc 

o Industry has Computer Software, Hospital & Health Care, Information Technology and 

Services, Management Consulting, etc. 

o The function has Customer Service, Management, Information Technology, etc. 

o Employment_type has Full-time, Contract, Part-time, Temporary, etc. 

o Required_experience has Mid-Senior level, Associate, Associate, etc. 

o Required_education has bachelor’s degree, High School or equivalent, Master's 

Degree, etc. 

• Text type: 
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The features that have text as data are known as Text features. Features like title, 

company_profile, description, requirements, and benefits, all describe the job posting, and it's 

an important component for identifying job postings. This is where we also are using NLP. 

• Complex type: 

These are certain types of features that don't fall under any definite category. They are features 

like location and salary_range.   

 

Feature Preparation: 

This is the part where we take each type of data we separated in the previous phase and clean them 

Text Type: 

Adding indicators 

Fill-NA: First go through the dataset and fill the empty inputs with an empty string. 

Pre-process text: This is where we will be using NLP. For each text data, we remove stop words. 

Stop words contain articles like “an, a, the”, Etc. It removes unimportant words and keeps the 

keywords for analysing phase. We create another column named “company profile specified”. This 

has a Boolean value and tells whether there is a company profile or not. Likewise, we create column 

names as “description specified”, “requirements specified”, and “benefits specified”. 

Complex Type: 

Complex type consists of location and salary, so we work on both separately 

Location 

Each location is mostly of the type of city, state, country. All are separated by commas (,). So, we 

split these entities.  

Sometimes there won't be 3 entities alone, it can be two or four or five, or in some cases, 3 entities 

might be there, but they would have not mentioned some entity and rather mentioned something 

else. In those cases, we attach the string “Unspecified” 

After we split all data to country, stale, and city. We create 3 columns in the table namely country, 

state, and city. Then we add all data we have collected to all columns. 

Finally, we remove the column location since we put it all into 3 rows as shown in Fig 4.3. 
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Fig 4.3 New columns are created for location 

Salary range 

Salary range is in the format min salary - max salary. 

If the range is not specified, we replace the null value with a range 0-0 (zero to zero). 

Then just like in the location column, we split the min salary and max salary 

Then we create two columns called min_salary and max_salary, and we add the values to these 

columns like shown in Fig 4.4. 

 

Fig 4.4 New columns for salary range 

We also created another column called salary_specified, this is for reference, it has a Boolean value 

like shown in Fig 4.5. 
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Fig 4.5 salary_specified column 

Finally, we drop the salary_range column from the table. We check if there are any null data with 

the features. For Boolean type naturally, there is no null value. In category type, there are null 

values, so we can fill all null values with the string “Unspecified”. 

With this, all values are filled, and no null values are present. 

Finally, for the fraudulent column, it's a Boolean type that says whether the job posting is fake or 

real. We change the Boolean to a text saying whether the job posting is real or fake. 

We save the cleaned data to “cleaned-data.csv” 

 

From Fig 4.6 we can see that after data pre-processed the dataset is balanced. 

 

Fig 4.6 Balanced Data set after cleaning 

 

4.4.2. EXPLORATORY DATA ANALYSIS 

In modern statistics and machine learning, data visualisation is a crucial ability. Statistics is 

concerned with quantitative data descriptions and estimations. Data visualization is a valuable set 

of tools for acquiring a qualitative understanding of data. This might be useful for spotting trends, 

faulty data, outliers, and other things when studying and getting a dataset. Data visualizations may 

be used to communicate and show crucial relations in graphs and charts that are far more visceral 

and meaningful to stakeholders than measurements of correlation or importance with a little subject 

expertise. Data visualization and data exploration are areas in and of themselves, and it will be 

recommended that you read some of the books indicated at the conclusion for further information. 
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Data may not make sense unless it is presented in a visual format, such as charts and graphs. The 

ability to see data samples and other objects rapidly is a crucial talent in both applied statistics and 

applied machine learning. It will show you how to utilize the many sorts of plots available when 

visualizing data in Python to help comprehend your own data. 

 

4.4.3. CORRELATION 

For every feature, we compare it with the fraudulent output, and see how much correlation is there 

between each feature with the output.  

 

4.4.4. COMPARISON 

When we have a fresh dataset, it's a smart option to display it using a variety of ways so we can see it 

from multiple angles. Model selection follows the same logic. To pick the one or two to complete, we 

should look at the direct results of your machine learning techniques in a variety of methods. Using 

various visualization approaches to display the average accuracy, variance, and other features of the 

distribution among model accuracies is one way to do this. 

In the next part, we see how to accomplish it in Python. The key to a true comparison of ML algorithms 

is to ensure that each method is assessed in the very same way on the very same data, which may be 

accomplished by requiring each method to be tested on the same test harness. 

The following algorithms were compared with the 4 features that is compatible with the output 

• Random Forest Classifier 

• Logistic regression 

• SVM 

• XGBoost 

 

Each method is evaluated using the K-fold cross validation technique, which is set up with the same 

random seed to ensure that the training data is divided in the same way and that each strategy is 

evaluated in the same way. Separate the training and testing sets. It is feasible to predict the outcome 

by comparing accuracy. 

 

Random Forest Classifier: 

RFC is just a combination of many decision trees. A Decision tree is, as the name suggests, takes 

decisions at times based on the data that are present. RCF is an ensemble model, an ensemble means 

a combination of many decision trees. With the data collected, the decision tree gives output and with 
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the output, we get from the decision tree, we create another decision tree for the outputs we get to get 

the accurate output while also considering many factors at the same time. The logic behind this is that 

a combination of many mediocre models is better than one good model. We need a Random Forest 

because we need features that have some predictive power. The trees of the forest and their predictions 

need to be uncorrelated so that the output does not waver. Some Machine Learning models need data 

in a specific format, such as the Random Forest method, which does not accept null values. As a result, 

null values must be handled from the initial source data set in order to run the random forest method. 

Another consideration is that the data set be written in such a manner that many Machine Learning and 

Deep Learning algorithms may be run on the same dataset. 

 

Logistic regression:  

Let us consider a scenario where we must tell whether that’s a spam email or not. If we use linear 

regression for this, then there is a need for setting up thresholds and that threshold-based classification 

is made. LR is mainly used when the target is categorical. In our project, we just must mention whether 

the job posting is fake or not, which falls into only two categories. It is a process of modelling the 

probability of a certain outcome from the input. As we mentioned before, LR works well with binary 

outcomes. Of Course, there are Multinomial logistic regression where the outcome can be more than 

two. It is considered as a supervised ML algorithm that is useful for binary classification problem. The 

difference between linear regression and logistic regression is that in logistic regression, the outcomes 

are bound between 0 and 1. 

 

It is said that Logistic regression is a transformation of linear regression using a function called sigmoid 

function. The advantage is that it can be used both for classification and also class probability 

estimation because it is tied with logistic data distribution. 

 

Support Vector Machines 

Support vector machines are a type of machine learning technique that can be used for both regression 

and classification, however it is more commonly employed for classification. SVM is an n-dimensional 

space model. We plot the data items in any nth dimension, where n is the number of features we have. 

As a result, the more features we have, the more dimensions we can deal with. The classification is 

then carried out by locating the hyperplane that separates these two classes. 
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The main advantage is that it can provide high-dimensional spaces. It is flexible when the number of 

dimensions is greater than the number of samples that we are provided. The reason we are 

implementing this classifier is that it can still predict the output with some missing samples as it was 

mentioned before. 

 

XGBoost: 

XGBoost is an optimized gradient boosting library that is designed to be efficient, flexible, and 

portable. From the Gradient Boosting framework, it can implement the machine learning algorithms. 

The reason to use XGBoost is because it has faster execution speed when compared to other gradient 

boosters. The individual model performance given by XGBoost is also incredible. 

It is an open-source implementation of gradient boosted tree techniques that is popular and efficient. 

Gradient boosting is supervised learning that combines an ensemble of estimates from a set of simple 

and weak models to try to properly predict a target variable. As a result, because our dataset is severely 

uneven, XGBoost can be of great assistance to our system. 

 

4.4.5. TRAINING 

The cleaned dataset is split into separate training and testing datasets in such a way that the 

number of real and fraudulent jobs are balanced. The ensemble model is then trained to 

differentiate and identify the nature of the jobs. 

 

4.4.6. TUNING THE MODEL 

Now that the model is created, we must tune it. Tuning is the process of assigning weights to each 

model. So that the result of each model is given separate importance based on their accuracy. This 

way, we can get the advantages of each model and it will not pull down the performance of the 

ensemble model. We are using brute force method, we assign different weights to each classifier 

and then check their performance, the highest performance that is achieved by the model is of by 

the weights 10,10, 10, 10 for each classifier and threshold of 20. 

 

4.4.7. TESTING & PERFORMANCE MEASUREMENTS 

The 4 ML models and the Ensemble model are tested against four features of the dataset based 

on which their performances are evaluated by 3 metrics: Precision and Recall which is then used 

to calculate the F1-score that determines the accuracy of the model created. 
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Measurement Metrics: 

 

 

 

Precision and Recall: 

Both are used for evaluating models of a particular class of interest, also known as the positive 

class. 

 

Precision is, for all positive predictions, how many are real positives? 

Recall is, for all real positive cases, how many are predicted positive? 
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F1 Score: 

It is used to assess the correctness of a model on a dataset. It assesses binary classification 

systems that assign positive or negative labels to examples. 

 

 

False Positives (FP):  

When the actual class is negative, and the projected class is positive. For example, if the real 

class states this passenger died, but the anticipated class predicts this passenger will live. 
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False Negatives (FN):  

When the actual class is positive, and the projected class is negative. For example, if the real 

class states this passenger survived, but the anticipated class predicts this passenger died. 

 

True Positives (TP):  

These are the accurately predicted positive values, indicating that the actual class value is yes, 

and the projected class value is also yes. For instance, if the actual class value indicates that this 

passenger survived, and the projected class also suggests that this passenger survived. 

 

True Negatives (TN):  

These are the accurately predicted negative values, indicating that the actual class value is no, 

and the projected class value is also no. For instance, if the actual class value indicates that this 

passenger died, and the projected class also suggests that this passenger died. 

 

Mean Squared Error: 

This is the most basic loss function. So basically, we subtract the model’s predictions and the 

truth, square it, and take the average across the entire dataset. 

 

Formula: 

MSE = 
1

𝑁
∑ (𝑦𝑖− 𝑦𝑖̂

)2𝑁
𝑖=1  

 

N - The number of samples we are testing 

yi - Ground truth 

𝑦𝑖̂- Model’s prediction 

 

MSE and F1-score and indirectly proportional, the more MSE is, the less F1-score is. So, our goal 

is to minimize as much MSE as possible. MSE can never be negative. 

 

4.4.8. DEPLOYMENT 

The Ensemble Model thus created is deployed and connected to a Flask application which is the 

interface the user will interact with and enter details which the model will analyze such as the 

company’s profile, the job description, benefits, and requirements.   
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CHAPTER 5 

 
CODING AND TESTING 

 

5.1 CLEANING THE DATASET 

There will always be some amount of inaccuracy with datasets regardless of how the data in it is 

obtained.  What we call, "Messy data" is data that is filled with irregularities and anomalies. Though 

some of the variations are real since they represent variance in the environment, others are most likely 

due to measurement, input, processing or data integration errors. These might range from errors human 

negligence, badly designed records, or merely an inability to control the format and the kind of data 

acquired from various external data sources. Such inconsistencies cause chaos when attempting to 

analyze data. Prior to actually performing data pre - processing for analysis, effort should be made to 

ensure that the data is as reliable and precise as feasible.  

 

5.1.1 IMPORTING LIBRARIES 

Python's import function is analogous to header files in other languages such as C and C++. Python 

modules can access code from other modules by importing the specific file or method using import. 

The import function is the most used method of triggering the import mechanism in python. Python 

considers a file to be a module. The module must be integrated using the import keyword before it can 

be used. By importing the module, the methods and variables included within the file may be utilized 

in another program. This capability is accessible in other programming languages as well. 

 

import pandas as pd 

import numpy as np 

import nltk 

from nltk.corpus import stopwords 

from nltk.tokenize import word_tokenize 

from nltk.stem import PorterStemmer 

 

Here we import the required libraries for the model Pandas is a free and open source data analysis 

package built on Python programming language. The pd alias is often used to import this library. alias: 

In Python, an alias is a different name for the same item. Instead of pandas, the Pandas package is now 

referred to as pd. The as pd section of the code then instructs Python to assign pandas the alias pd. The 

pandas functions can be used by having to type pd.function name instead of pandas.function name. 
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The import NumPy line of code instructs Python to import the NumPy library into the current 

environment. The as np section of the code then instructs Python to assign NumPy the alias np. You 

may utilize NumPy functions by just entering np. NLTK is a Python toolkit for working with natural 

language processing (NLP). It provides us with a large number of test datasets for various text 

processing libraries. NLTK may be used to execute a number of tasks such as tokenizing, parse tree 

visualization, and so on. Import stop words from nltk.corpus. This is a list of English lexical stop 

words. That is, most NLP actions, such as part-of-speech labelling, tokenization, and parsing, ignore 

these words. Tokenizers are program that convert strings into lists of substrings. Tokenizers, for 

example, can be used to locate letters and commas, whitespace, full stops etc. in a string.  

 

5.1.2 READING AND ANALYZING THE DATASET 

data = pd.read_csv("./fake_job_postings.csv") 

data.head(10) 

 

5.1.3 SPLITTING THE DATA INTO GROUPS OF FEATURE TYPES 

bin_features = ['telecommuting', 'has_company_logo', 'has_questions'] 

cat_features = ['department', 'employment_type', 'required_experience',  

                'required_education', 'industry', 'function'] 

 

text_features = ['title', 'company_profile', 'description', 'requirements', 

'benefits'] 

complex_features = ['location', 'salary_range'] 

 

The features of the dataset are split based on their respective feature types. Here, telecommuting, 

company logo, etc. all belong to ‘bin_features’ as they are binary features. Features like department, 

employment type, experience, educational qualifications etc. are categorical features and features like 

the company’s title, profile, description, requirements and benefits fall under the text features category. 

However, certain features like location and salary range are considered complex features here. 

 

data.drop('job_id', axis=1, inplace=True) 

 

As the feature, ‘job_id’ is of no relevance to our model and usage, we drop the entire column. 

 

5.1.4 ADDING INDICATORS AND FILLING NA 

for feature_name in text_features[1:]: 

    un_feature_name = f"{feature_name}_specified" 
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    data[un_feature_name] = (~data[feature_name].isna()).astype('int') 

    bin_features += [un_feature_name] 

data.head()[text_features + bin_features[-4:]] 

 

 

for feature_name in text_features[1:]: 

    data[feature_name].fillna('', inplace=True) 

nltk.download('stopwords') 

nltk.download('punkt') 

nltk_lang = stopwords.fileids() 

stop_words = set(stopwords.words(nltk_lang)) 

porter = PorterStemmer() 

def preprocesstexts(texts): 

    preprocess_texts = [] 

    for text in texts: 

        text = ''.join([sym.lower() for sym in text if sym.isalpha() or sym == ' ']) 

        tokenized_text = word_tokenize(text) 

        tokenized_text_wo_sw = [word for word in tokenized_text if word not in 

stop_words] 

        tokenized_text_wo_sw_stem = [porter.stem(word) for word in 

tokenized_text_wo_sw] 

        preprocess_texts += [' '.join(tokenized_text_wo_sw)] 

    return preprocess_texts 

for feature_name in text_features: 

    data[feature_name] = preprocesstexts(data[feature_name]) 

 

data[text_features].head() 
 

 

Fig. 5.1 important text features of the dataset 

 

5.1.5 COMPLEX FEATURES OF THE DATASET 

LOCATION 

location = data['location'].copy() 

location.head(15) 

location_splitted = list(location.str.split(', ').values) 

location_splitted[:15] 

for loc_ind, loc in enumerate(location_splitted): 

    if loc is np.nan: 

        location_splitted[loc_ind] = ['Unspecified'] * 3 
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    else: 

        for el_ind, el in enumerate(loc): 

            if el == '': 

                loc[el_ind] = 'Unspecified' 

location_splitted[:15] 

 

Fig. 5.2 Locations mentioned in the dataset 

 

LOCATION WITH GREATER THAN OR LESSER PARTS 

for loc_ind, loc in enumerate(location_splitted): 

    if len(loc) > 3: 

        print(loc_ind, loc) 

for loc_ind, loc in enumerate(location_splitted): 

    if len(loc) < 3: 

        print(loc_ind, loc) 

location_splitted = list(map(lambda loc: list(loc), location_splitted)) 

for loc_ind, loc in enumerate(location_splitted): 

    if len(loc) > 3: 

        location_splitted[loc_ind] = loc[:2] + [', '.join(loc[2:])] 

    if len(loc) < 3: 

        location_splitted[loc_ind] += ['Unpecified'] * 2 

 

data_location = pd.DataFrame(location_splitted, columns=['country', 'state', 

'city']) 

 

cat_features += ['country', 'state', 'city'] 

 

data = pd.concat([data, data_location], axis=1) 
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data.drop('location', axis=1, inplace=True) 

data_location.head(15) 

 

 

Fig. 5.3 Locations with greater than or lesser than parts 

 

SALARY RANGE 

salary_range = data.salary_range.copy() 

salary_range.head(15) 

salary_range.fillna('0-0', inplace=True) 

salary_range_sep = list(salary_range.str.split('-').values) 

salary_range_sep[:5] 

for range_ind, s_range in enumerate(salary_range_sep): 

    if len(s_range) < 2 or len(s_range) > 2: 

        print(range_ind, s_range) 

salary_range_sep[5538] = ['40000', '40000'] 

error_range_inds = [] 

for range_ind, s_range in enumerate(salary_range_sep): 

    min_value, max_value = s_range 

    if not min_value.isdigit() or not max_value.isdigit(): 

        print(range_ind, (min_value, max_value)) 
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        error_range_inds += [range_ind] 

for range_ind in error_range_inds: 

    salary_range_sep[range_ind] = ['0', '0'] 

data_salary_range = pd.DataFrame(np.array(salary_range_sep, dtype='int64'),  

                                 columns=['min_salary', 'max_salary']) 

data_salary_range.head(15) 

data_salary_range['salary_specified'] = ((data_salary_range.min_salary != 0) |  

                                         (data_salary_range.max_salary != 

0)).astype('int64') 

data_salary_range.head(15) 

num_features = ['min_salary', 'max_salary'] 

bin_features += ['salary_specified'] 

data = pd.concat([data, data_salary_range], axis=1) 

data.head() 

data.drop('salary_range', axis=1, inplace=True) 

data.info() 

 

data.fillna('Unspecified', inplace=True) 

data.info() 

 

 
Fig. 5.4 Output where features are not specified 

 

f = [] 

for ind, val in enumerate(data['fraudulent']): 

    if val == 1: 

        f.append('FRAUD') 

    else: 

        f.append('REAL') 

 

data.pop('fraudulent') 

 

print(bin_features) 

print(text_features) 

print(complex_features) 

print(cat_features) 

print(num_features) 

data['fraudulent'] = f 
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Fig. 5.5 Salary Ranges offered by companies in the dataset 

 

5.1.6 SAVING THE CLEANED DATASET TO A NEW CSV FILE 

data.to_csv('./cleaned-data.csv') 

 

5.2 EXPLORATORY DATA ANALYSIS 

fig = plt.figure(figsize=(25, 30)) 

outer = gridspec.GridSpec(4, 2, wspace=0.2, hspace=0.1) 

 

for feature_ind, feature_name in enumerate(bin_features): 

    inner = gridspec.GridSpecFromSubplotSpec(1, 2, subplot_spec=outer[feature_ind],  

                                             wspace=0.5, hspace=0.7) 

     

    ax = plt.Subplot(fig, outer[feature_ind]) 

    ax.set_title(f'The distribution of fraudulent for each {feature_name}\'s class') 

    ax.axis('off') 

    fig.add_subplot(ax) 

     

    for feature_class in [0, 1]: 

        ax = plt.Subplot(fig, inner[feature_class]) 

        feature_cl_vc = data[data[feature_name] == 

feature_class].fraudulent.value_counts().sort_index() 

        if len(feature_cl_vc) == 2: 

            feature_cl_vc.index = ['non-fraudulent', 'fraudulent'] 

        else: 

            feature_cl_vc.index = ['fraudulent'] 

         

        ax.pie(feature_cl_vc.values, labels=feature_cl_vc.index, autopct='%1.1f%%') 

        ax.set_title(f'{feature_name} = {feature_class}') 

        fig.add_subplot(ax) 

 

fig.suptitle('Distributions of fraudulent for the binary features') 

fig.subplots_adjust(top=0.95) 

fig.show() 

 

5.3 CREATING A CONTINGENCY TABLE  

 
cont_table = pd.crosstab(data.fraudulent, data.description_specified) 

print('Contingency table (fraudulent x description_specified):') 

display(cont_table) 
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Fig. 5.6 Contingency Table for fraudulent x description feature of the dataset 

 

def print_stats_for_texts(feature_name): 

    '''Calculates statistics for fraudulent and non-fraudulent count of words in 

feature\'s texts.''' 

    if feature_name == 'title': 

        feature_values_0f = data[(data.fraudulent == 0)][feature_name].astype(str) 

        feature_values_1f = data[(data.fraudulent == 1)][feature_name].astype(str) 

    else: 

        feature_values_0f = data[(data.fraudulent == 0) & 

data[f'{feature_name}_specified']][feature_name].astype(str) 

        feature_values_1f = data[(data.fraudulent == 1) & 

data[f'{feature_name}_specified']][feature_name].astype(str) 

     

    lens_0f = feature_values_0f.str.split(' ').apply(len) 

    lens_1f = feature_values_1f.str.split(' ').apply(len)     

    mean_lens_0f = round(np.mean(lens_0f), 4) 

    mean_lens_1f = round(np.mean(lens_1f), 4) 

     

    bigger_mean, smaller_mean = (lens_0f, lens_1f) if mean_lens_0f > mean_lens_1f 

else (lens_1f, lens_0f) 

    mean_diff = round(np.mean(bigger_mean) - np.mean(smaller_mean), 4) 

     

    print(f'Feature: {feature_name}\n======') 

    print(f'Mean of {feature_name}\'s count of words in non-fraudulent posts: 

{mean_lens_0f}') 

    print(f'Mean of {feature_name}\'s count of words in fraudulent 

posts:     {mean_lens_1f}') 

    print(f'Difference in these means: {mean_diff}') 

for feature_name in text_features: 

    print_stats_for_texts(feature_name) 

    print() 
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Fig. 5.7 Word Count for the main features of the fraudulent and real postings 

 

data['company_profile_count_of_words'] = 

data['company_profile'].astype(str).str.split(' ').apply(len) 

data['requirements_count_of_words'] = data['requirements'].astype(str).str.split(' 

').apply(len) 

data.head()[['company_profile_count_of_words', 'requirements_count_of_words']] 

 

 



 

 

 

51 

 

 

 

Fig. 5.8 Word Count for company profile and requirements 

 

5.4 CORRELATION 

num_features += ['company_profile_count_of_words', 'requirements_count_of_words'] 

 

plt.figure(figsize=(20,20)) 

plt.show(sns.heatmap(data.corr(), annot=True)) 

 

 

Fig. 5.9 Correlation matrix of all the features 

 

5.5 COMPARISON 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.linear_model import LogisticRegression 
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from sklearn.svm import LinearSVC 

from sklearn.pipeline import Pipeline 

from sklearn.metrics import classification_report, accuracy_score, confusion_matrix, 

ConfusionMatrixDisplay 

from xgboost import XGBClassifier 

import pandas as pd 

import numpy as np 

from sklearn.model_selection import train_test_split 

from sklearn.feature_extraction.text import CountVectorizer 

import re 

import string 

import nltk 

from nltk.corpus import stopwords 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

dataSet = pd.read_csv("../cleaned-data.csv") 

 

Y = np.array(dataSet['fraudulent']) 

rf = RandomForestClassifier() 

lr = LogisticRegression(max_iter=1000) 

svm = LinearSVC(C=0.01, class_weight="balanced", random_state=42) 

svm = Pipeline([('svm', svm)]) 

xgbc = XGBClassifier(objective="binary:logistic") 

Y = np.array(dataSet['fraudulent']) 

 

 

plt.figure(figsize=(20,20)) 

plt.show(sns.heatmap(dataSet.corr(), annot=True)) 

 

5.5.1 DATA FEATURE 1 – COMPANY DESCRIPTION 

X = np.array(dataSet['company_profile']) 

newX = ['Unspecified' if x is np.NaN else x for x in X] 

X = newX 

cv = CountVectorizer() 

X = cv.fit_transform(X) 

x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, 

random_state=42) 

 

rf.fit(x_train, y_train) 

lr.fit(x_train, y_train) 

svm.fit(x_train, y_train) 
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xgbc.fit(x_train, y_train) 

 

rfP = rf.predict(x_test) 

lrP = lr.predict(x_test) 

svmP = svm.predict(x_test) 

xgbP = xgbc.predict(x_test) 

 

RANDOM FOREST CLASSIFIER 

print("Accuracy :", accuracy_score(y_test, rfP), end="\n\n") 

print(classification_report(y_test, rfP)) 

print("Confusion Matrix") 

cm = confusion_matrix(y_test, rfP) 

disp = ConfusionMatrixDisplay(confusion_matrix=cm) 

disp.plot() 

plt.show() 

 

LOGISTIC REGRESSION 

print("Accuracy :", accuracy_score(y_test, lrP), end="\n\n") 

print(classification_report(y_test, lrP)) 

print("Confusion Matrix") 

cm = confusion_matrix(y_test, lrP) 

disp = ConfusionMatrixDisplay(confusion_matrix=cm) 

disp.plot() 

plt.show() 

 

SUPPORT VECTOR MACHINE 

print("Accuracy :", accuracy_score(y_test, svmP), end="\n\n") 

print(classification_report(y_test, svmP)) 

print("Confusion Matrix") 

cm = confusion_matrix(y_test, svmP) 

disp = ConfusionMatrixDisplay(confusion_matrix=cm) 

disp.plot() 

plt.show() 

 

XGBOOST 

print("Accuracy :", accuracy_score(y_test, xgbP), end="\n\n") 

print(classification_report(y_test, xgbP)) 

print("Confusion Matrix") 

cm = confusion_matrix(y_test, xgbP) 

disp = ConfusionMatrixDisplay(confusion_matrix=cm) 

disp.plot() 

plt.show() 
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5.5.2 DATA FEATURE 2 – JOB DESCRIPTION 

X = np.array(dataSet['description']) 

newX = ['Unspecified' if x is np.NaN else x for x in X] 

X = newX 

cv = CountVectorizer() 

X = cv.fit_transform(X) 

x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, 

random_state=42) 

rf.fit(x_train, y_train) 

lr.fit(x_train, y_train) 

svm.fit(x_train, y_train) 

xgbc.fit(x_train, y_train) 

rfP = rf.predict(x_test) 

lrP = lr.predict(x_test) 

svmP = svm.predict(x_test) 

xgbP = xgbc.predict(x_test) 

 

 

RANDOM FOREST CLASSIFIER 

print("Accuracy :", accuracy_score(y_test, rfP), end="\n\n") 

print(classification_report(y_test, rfP)) 

print("Confusion Matrix") 

cm = confusion_matrix(y_test, rfP) 

disp = ConfusionMatrixDisplay(confusion_matrix=cm) 

disp.plot() 

plt.show() 

 

LOGISTIC REGRESSION 

print("Accuracy :", accuracy_score(y_test, lrP), end="\n\n") 

print(classification_report(y_test, lrP)) 

print("Confusion Matrix") 

cm = confusion_matrix(y_test, lrP) 

disp = ConfusionMatrixDisplay(confusion_matrix=cm) 

disp.plot() 

plt.show() 

 

SUPPORT VECTOR MACHINE 

print("Accuracy :", accuracy_score(y_test, svmP), end="\n\n") 

print(classification_report(y_test, svmP)) 

print("Confusion Matrix") 

cm = confusion_matrix(y_test, svmP) 

disp = ConfusionMatrixDisplay(confusion_matrix=cm) 

disp.plot() 
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plt.show() 

 

XGBOOST 

print("Accuracy :", accuracy_score(y_test, xgbP), end="\n\n") 

print(classification_report(y_test, xgbP)) 

print("Confusion Matrix") 

cm = confusion_matrix(y_test, xgbP) 

disp = ConfusionMatrixDisplay(confusion_matrix=cm) 

disp.plot() 

plt.show() 

 

5.5.3 DATA FEATURE 3 – REQUIREMENTS 

X = np.array(dataSet['requirements']) 

newX = ['Unspecified' if x is np.NaN else x for x in X] 

X = newX 

cv = CountVectorizer() 

X = cv.fit_transform(X) 

x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, 

random_state=42) 

 

rf.fit(x_train, y_train) 

lr.fit(x_train, y_train) 

svm.fit(x_train, y_train) 

xgbc.fit(x_train, y_train) 

 

rfP = rf.predict(x_test) 

lrP = lr.predict(x_test) 

svmP = svm.predict(x_test) 

xgbP = xgbc.predict(x_test) 

 

RANDOM FOREST CLASSIFIER 

print("Accuracy :", accuracy_score(y_test, rfP), end="\n\n") 

print(classification_report(y_test, rfP)) 

print("Confusion Matrix") 

cm = confusion_matrix(y_test, rfP) 

disp = ConfusionMatrixDisplay(confusion_matrix=cm) 

disp.plot() 

plt.show() 

 

LOGISTIC REGRESSION 

print("Accuracy :", accuracy_score(y_test, lrP), end="\n\n") 

print(classification_report(y_test, lrP)) 
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print("Confusion Matrix") 

cm = confusion_matrix(y_test, lrP) 

disp = ConfusionMatrixDisplay(confusion_matrix=cm) 

disp.plot() 

plt.show() 

 

SUPPORT VECTOR MACHINE 

print("Accuracy :", accuracy_score(y_test, svmP), end="\n\n") 

print(classification_report(y_test, svmP)) 

print("Confusion Matrix") 

cm = confusion_matrix(y_test, svmP) 

disp = ConfusionMatrixDisplay(confusion_matrix=cm) 

disp.plot() 

plt.show() 

 

XGBOOST 

print("Accuracy :", accuracy_score(y_test, xgbP), end="\n\n") 

print(classification_report(y_test, xgbP)) 

print("Confusion Matrix") 

cm = confusion_matrix(y_test, xgbP) 

disp = ConfusionMatrixDisplay(confusion_matrix=cm) 

disp.plot() 

plt.show() 

 

5.5.4 DATA FEATURE 4 – BENEFITS 

X = np.array(dataSet['benefits']) 

newX = ['Unspecified' if x is np.NaN else x for x in X] 

X = newX 

cv = CountVectorizer() 

X = cv.fit_transform(X) 

x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, 

random_state=42) 

rf.fit(x_train, y_train) 

lr.fit(x_train, y_train) 

svm.fit(x_train, y_train) 

xgbc.fit(x_train, y_train) 

rfP = rf.predict(x_test) 

lrP = lr.predict(x_test) 

svmP = svm.predict(x_test) 

xgbP = xgbc.predict(x_test) 

 

RANDOM FOREST CLASSIFIER 
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print("Accuracy :", accuracy_score(y_test, rfP), end="\n\n") 

print(classification_report(y_test, rfP)) 

print("Confusion Matrix") 

cm = confusion_matrix(y_test, rfP) 

disp = ConfusionMatrixDisplay(confusion_matrix=cm) 

disp.plot() 

plt.show() 

 

 

 

LOGISTIC REGRESSION 

print("Accuracy :", accuracy_score(y_test, lrP), end="\n\n") 

print(classification_report(y_test, lrP)) 

print("Confusion Matrix") 

cm = confusion_matrix(y_test, lrP) 

disp = ConfusionMatrixDisplay(confusion_matrix=cm) 

disp.plot() 

plt.show() 

 

SUPPORT VECTOR MACHINE 

print("Accuracy :", accuracy_score(y_test, svmP), end="\n\n") 

print(classification_report(y_test, svmP)) 

print("Confusion Matrix") 

cm = confusion_matrix(y_test, svmP) 

disp = ConfusionMatrixDisplay(confusion_matrix=cm) 

disp.plot() 

plt.show() 

 

XGBOOST 

print("Accuracy :", accuracy_score(y_test, xgbP), end="\n\n") 

print(classification_report(y_test, xgbP)) 

print("Confusion Matrix") 

cm = confusion_matrix(y_test, xgbP) 

disp = ConfusionMatrixDisplay(confusion_matrix=cm) 

disp.plot() 

plt.show() 

 

5.5.5 DATA FEATURE 5 – COMPANY LOGO 

X = np.array(dataSet['has_company_logo']) 

x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, 

random_state=42) 

x_train = x_train.reshape(-1,1) 
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x_test = x_test.reshape(-1,1) 

rf.fit(x_train, y_train) 

lr.fit(x_train, y_train) 

svm.fit(x_train, y_train) 

xgbc.fit(x_train, y_train) 

rfP = rf.predict(x_test) 

lrP = lr.predict(x_test) 

svmP = svm.predict(x_test) 

xgbP = xgbc.predict(x_test) 

 

 

 

RANDOM FOREST CLASSIFIER 

print("Accuracy :", accuracy_score(y_test, rfP), end="\n\n") 

print(classification_report(y_test, rfP)) 

print("Confusion Matrix") 

cm = confusion_matrix(y_test, rfP) 

disp = ConfusionMatrixDisplay(confusion_matrix=cm) 

disp.plot() 

plt.show() 

 

LOGISTIC REGRESSION 

print("Accuracy :", accuracy_score(y_test, lrP), end="\n\n") 

print(classification_report(y_test, lrP)) 

print("Confusion Matrix") 

cm = confusion_matrix(y_test, lrP) 

disp = ConfusionMatrixDisplay(confusion_matrix=cm) 

disp.plot() 

plt.show() 

 

SUPPORT VECTOR MACHINE 

print("Accuracy :", accuracy_score(y_test, svmP), end="\n\n") 

print(classification_report(y_test, svmP)) 

print("Confusion Matrix") 

cm = confusion_matrix(y_test, svmP) 

disp = ConfusionMatrixDisplay(confusion_matrix=cm) 

disp.plot() 

plt.show() 

 

XGBOOST 

print("Accuracy :", accuracy_score(y_test, xgbP), end="\n\n") 

print(classification_report(y_test, xgbP)) 
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print("Confusion Matrix") 

cm = confusion_matrix(y_test, xgbP) 

disp = ConfusionMatrixDisplay(confusion_matrix=cm) 

disp.plot() 

plt.show() 

 

5.5.6 DATA FEATURE 6 – EMPLOYMENT TYPE 

X = np.array(dataSet['city']) 

newX = ['Unspecified' if x is np.NaN else x for x in X] 

X = newX 

cv = CountVectorizer() 

X = cv.fit_transform(X) 

x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, 

random_state=42) 

rf.fit(x_train, y_train) 

lr.fit(x_train, y_train) 

svm.fit(x_train, y_train) 

xgbc.fit(x_train, y_train) 

rfP = rf.predict(x_test) 

lrP = lr.predict(x_test) 

svmP = svm.predict(x_test) 

xgbP = xgbc.predict(x_test) 

 

 

RANDOM FOREST CLASSIFIER 

print("Accuracy :", accuracy_score(y_test, rfP), end="\n\n") 

print(classification_report(y_test, rfP)) 

print("Confusion Matrix") 

cm = confusion_matrix(y_test, rfP) 

disp = ConfusionMatrixDisplay(confusion_matrix=cm) 

disp.plot() 

plt.show() 

 

LOGISTIC REGRESSION 

print("Accuracy :", accuracy_score(y_test, lrP), end="\n\n") 

print(classification_report(y_test, lrP)) 

print("Confusion Matrix") 

cm = confusion_matrix(y_test, lrP) 

disp = ConfusionMatrixDisplay(confusion_matrix=cm) 

disp.plot() 

plt.show() 
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SUPPORT VECTOR MACHINE 

print("Accuracy :", accuracy_score(y_test, svmP), end="\n\n") 

print(classification_report(y_test, svmP)) 

print("Confusion Matrix") 

cm = confusion_matrix(y_test, svmP) 

disp = ConfusionMatrixDisplay(confusion_matrix=cm) 

disp.plot() 

plt.show() 

 

XGBOOST 

print("Accuracy :", accuracy_score(y_test, xgbP), end="\n\n") 

print(classification_report(y_test, xgbP)) 

print("Confusion Matrix") 

cm = confusion_matrix(y_test, xgbP) 

disp = ConfusionMatrixDisplay(confusion_matrix=cm) 

disp.plot() 

plt.show() 

 

5.6 CREATING THE ENSEMBLE MODEL 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.linear_model import LogisticRegression 

from sklearn.svm import LinearSVC 

from sklearn.pipeline import Pipeline 

from xgboost import XGBClassifier 

from sklearn.metrics import accuracy_score, confusion_matrix, 

ConfusionMatrixDisplay, classification_report 

from sklearn.model_selection import train_test_split 

from nltk.corpus import stopwords 

from sklearn.feature_extraction.text import CountVectorizer 

import pandas as pd 

import numpy as np 

import joblib 

from nltk.stem import PorterStemmer 

from nltk.tokenize import word_tokenize 

import warnings 

warnings.filterwarnings('ignore') 

nltk_lang = stopwords.fileids() 

stop_words = set(stopwords.words(nltk_lang)) 

weightRF = 1 

weightLR = 1 

weightSV = 1 

weightXG = 1 

threshHold = 2 

class CustomVotingClassifier: 

    def __init__(self) -> None: 
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        self.rf = RandomForestClassifier() 

        self.lr = LogisticRegression(max_iter=1000) 

        self.svm = LinearSVC(C=0.01, random_state=42) 

        self.svm = Pipeline([("SVM", self.svm)]) 

        self.xgbc = XGBClassifier()     

        self.porter = PorterStemmer() 

     

    def preprocesstexts(self, texts): 

        preprocess_texts = [] 

        for text in texts: 

            text = ''.join([sym.lower() for sym in text if sym.isalpha() or sym == ' 

']) 

            tokenized_text = word_tokenize(text) 

            tokenized_text_wo_sw = [word for word in tokenized_text if word not in 

stop_words] 

            tokenized_text_wo_sw_stem = [self.porter.stem(word) for word in 

tokenized_text_wo_sw] 

            preprocess_texts += [' '.join(tokenized_text_wo_sw_stem)] 

        return preprocess_texts 

         

     

    def fit(self,  xtrain1, xtrain2, xtrain3, xtrain4, ytrain) : 

        self.rf.fit(xtrain1, ytrain) 

        self.lr.fit(xtrain2, ytrain) 

        self.svm.fit(xtrain3, ytrain) 

        self.xgbc.fit(xtrain4, ytrain) 

 

    def predict(self, data): 

        # self.data = data.apply(self.clean) 

        result = [] 

        self.rfP = np.array(self.rf.predict(data)) 

        self.lrP = np.array(self.lr.predict(data)) 

        self.svmP = np.array(self.svm.predict(data)) 

        self.xgbP = np.array(self.xgbc.predict(data)) 

 

        for i in range(len(self.rfP)): 

            if (self.rfP[i] * weightRF + self.lrP[i] * weightLR + self.svmP[i] * 

weightSV + self.xgbP[i] * weightXG) >= threshHold: 

                result.append(1) 

            else: 

                result.append(0) 

         

        return result 

     

    def classification(self, y_test): 

        print("RF") 

        print(classification_report(y_test, self.rfP)) 
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        print(accuracy_score(y_test, self.rfP)) 

        print("LR") 

        print(classification_report(y_test, self.lrP)) 

        print(accuracy_score(y_test, self.lrP)) 

        print("SVM") 

        print(classification_report(y_test, self.svmP)) 

        print(accuracy_score(y_test, self.svmP)) 

        print("XGB") 

        print(classification_report(y_test, self.xgbP)) 

        print(accuracy_score(y_test, self.xgbP)) 

 

CVC = CustomVotingClassifier() 

cv = CountVectorizer() 

 

dataSet = pd.read_csv("../Datasets/cleaned-data.csv") 

 

cp = dataSet['company_profile'] 

d = dataSet['description'] 

b = dataSet['benefits'] 

r = dataSet['requirements'] 

newCP = ['Unspecified' if x is np.NaN else x for x in cp] 

newD = ['Unspecified' if x is np.NaN else x for x in d] 

newB = ['Unspecified' if x is np.NaN else x for x in b] 

newR = ['Unspecified' if x is np.NaN else x for x in r] 

X = [] 

for i in range(len(newCP)): 

    X.append(newCP[i] + " " + newD[i]+ " " + newB[i] + " " + newR[i]) 

X = np.array(X) 

Y = dataSet['fraudulent'] 

 

cv = CountVectorizer() 

X = cv.fit_transform(X) 

xtrain, xtest, ytrain, ytest = train_test_split(X, Y, test_size=0.3, 

random_state=42) 

print("Training") 

CVC.fit(xtrain1=xtrain, xtrain2=xtrain, xtrain3=xtrain, xtrain4=xtrain, 

ytrain=ytrain) 

print("result") 

# inputD = input() 

# inputD = CVC.clean(inputD) 

# CVC.predict(cv.transform([inputD]).toarray()) 

CVC.predict(xtest) 

print(classification_report(ytest, CVC.predict(xtest))) 
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Fig. 5.10 Training the ensemble model 

print(classification_report(ytest, CVC.predict(xtest))) 

print(accuracy_score(ytest, CVC.predict(xtest))) 

CVC.classification(ytest) 

k = CVC.preprocesstexts([input()]) 

newK = ['Unspecified' if x is np.NaN else x for x in k] 

print(newK) 

asd = cv.transform(newK).toarray() 

print(CVC.predict(asd)) 

 

All the files we have worked with so far and the completed model are then made into pkl files and 

deployed into flask for testing and tuning to make adjustments and see if the model is working as 

intended. A pickle is largely used in Python for serializing and deserializing Python object structures. 

In other words, it is the act of transforming an object into something like a byte flow in order to store 

it in a file/database, retain program state between sessions, or transmit information over a network. 

 

5.7 TUNING THE MODEL 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.linear_model import LogisticRegression 

from sklearn.svm import LinearSVC 

from sklearn.pipeline import Pipeline 

from xgboost import XGBClassifier 

from sklearn.metrics import accuracy_score 

from sklearn.model_selection import train_test_split 

from nltk.corpus import stopwords 
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from sklearn.feature_extraction.text import CountVectorizer 

import pandas as pd 

import numpy as np 

import joblib 

from nltk.stem import PorterStemmer 

from nltk.tokenize import word_tokenize 

import warnings 

import nltk  

nltk.download("stopwords") 

warnings.filterwarnings('ignore') 

nltk_lang = stopwords.fileids() 

stop_words = set(stopwords.words(nltk_lang)) 

 

rf = RandomForestClassifier() 

lr = LogisticRegression(max_iter=1000) 

svm = LinearSVC(C=0.01, random_state=42) 

svm = Pipeline([("SVM", svm)]) 

xgbc = XGBClassifier()     

porter = PorterStemmer() 

 

dataSet = pd.read_csv("cleaned-data.csv") 

 

cp = dataSet['company_profile'] 

d = dataSet['description'] 

b = dataSet['benefits'] 

r = dataSet['requirements'] 

newCP = ['Unspecified' if x is np.NaN else x for x in cp] 

newD = ['Unspecified' if x is np.NaN else x for x in d] 

newB = ['Unspecified' if x is np.NaN else x for x in b] 

newR = ['Unspecified' if x is np.NaN else x for x in r] 

X = [] 

for i in range(len(newCP)): 

    X.append(newCP[i] + " " + newD[i]+ " " + newB[i] + " " + newR[i]) 

gg = X 

X = pd.Series(X) 

Y = dataSet['fraudulent'] 

 

cv = CountVectorizer() 

X = cv.fit_transform(X) 

xtrain, xtest, ytrain, ytest = train_test_split(X, Y, test_size=0.3, 

random_state=42) 

 

rf.fit(xtrain, ytrain) 

lr.fit(xtrain, ytrain) 
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svm.fit(xtrain, ytrain) 

xgbc.fit(xtrain, ytrain) 

 

rfP = rf.predict(xtest) 

lrP = lr.predict(xtest) 

svmP = svm.predict(xtest) 

xgbP = xgbc.predict(xtest) 

 

from sklearn.metrics import f1_score 

from tqdm import tqdm 

def tune(): 

    mA = 0 

    mF = 0 

    maxAcc = [] 

    maxF1 = [] 

    for i in tqdm(range(0,11,1)): 

        for j in (range(0,11,1)): 

            for k in (range(0,11,1)): 

                for l in (range(0,11,1)): 

                    for m in (range(1,40,1)): 

                        res = [] 

                        for g in range(len(rfP)): 

                            if (rfP[g]*i+ lrP[g]*j + svmP[g]*k + xgbP[g]*l) >= m: 

                             

                                res.append(1) 

                            else: 

                                res.append(0) 

                        acc = accuracy_score(ytest, res) 

                        f = f1_score(ytest, res) 

                        if acc >= mA: 

                            maxAcc.append([i,j,k,l,m,acc]) 

                            mA = acc 

                        if f >= mF: 

                            maxF1.append([i,j,k,l,m,f]) 

                            mF = f 

    return mA, mF, maxAcc, maxF1 

 

 

maxAcc[-1] 

maxF1[-1] 
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Fig. 5.11 Accuracy and F1 Scores of the tuned model 

 

import csv 

heading = ['RF','LR','SV','XG','MAX'] 

with open("maxACC.csv", 'w') as f: 

    write = csv.writer(f) 

    write.writerow(heading) 

    write.writerows(maxAcc) 

with open("maxF1.csv", 'w') as f: 

    write = csv.writer(f) 

    write.writerow(heading) 

    write.writerows(maxF1) 
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CHAPTER 6 

 

RESULTS AND OBSERVATIONS 

 

6.1. COMBINING ALL FEATURES: 

Accuracy and f1-score of all models with combined data as follows. 

 

6.1.1. RANDOME FOREST CLASSIFIER 

 

Fig 6.1 Performance of RFC with Combined Features 

 

6.1.2. LOGISTIC REGRESSION 

 

Fig 6.2 Performance of LR with Combined Features 

6.1.3. SVM 

 

Fig 6.3 Performance of SVM with Combined Features 
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6.1.4. XGBOOST 

 

Fig 6.4 Performance of XGBoost with Combined Features 

 

 

6.2. PERFORMANCE OF ENSEMBLE MODEL 

Now that the ensemble model is created, we are measuring the performance of the ensemble 

model. 

 

6.2.1. BEFORE TUNING 

In Table 6.1, the performance of our ensemble model is listed. These results are 

obtained before tuning. 

 

Table 6.1 Performance of Ensemble model before 

Tuning the model 

Performance 

Metrics 

Models 

Custom Ensemble Model 

Precision 0.97 

Recall 0.72 

F1 - Score 0.82 

Accuracy 98.4% 

 

6.2.2. AFTER TUNING 

In Table 6.2, the performance of our ensemble model is listed. These results are 

obtained after tuning the model. 
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Table 6.2 Performance of Ensemble model after 

Tuning the model 

Performance 

Metrics 

Models 

Custom Ensemble Model 

Precision 0.93 

Recall 0.79 

F1 - Score 0.86 

Accuracy 98.6% 

 

6.2.3. OVERALL PERFORMANCE 

In fig the overall performance of the ensemble model is listed.  

 
Fig 6.5 Performance of Ensemble Model with Combined Features 

0 – real job posting 

1 – fake job posting 

 

The confusion matrix is drawn for real and job posting in fig. 
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Fig 6.6 Confusion matrix of Ensemble Model with Combined Features 

 

 

6.3. OUTPUT SCREENSHOTS 

Now we can look at fig 6.7, 6.8, 6.9 to view how the final product looks like. 

6.3.1    INPUT SCREEN 

This is the input screen where the user has to enter the inputs of job posting 

 

 

Fig 6.7 Input Screen. 
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6.3.2 OUTPUT SCREENS 

This screen is displayed when the job posting that the user entered is fake. 

 

 

Fig 6.8 Fake Job Output Screen 

 

The following page is shown when the job posting is real. 

 

 

Fig 6.9 Real Job Output Screen 
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CONCLUSION 

 

In this project we have created a fraudulent checker tool which uses an ensemble model – combination 

of 4 Machine Learning Algorithms - SVM, XGBoost, Logistic Regression, and Random Forest 

Classifier. This ensemble model shows an accuracy of 98.6% and F1 score of 0.99 and 0.85 for non-

fraudulent and fraudulent respectively. We first did data preprocessing where the quality of raw data 

is checked, cleaned, transformed, and reduced into an understandable format. It has 4 major steps: data 

cleaning, integration, reduction, and transformation. Then exploratory Data Analysis takes place. 

Exploratory Data Analysis is a core step for discovering patterns and anomalies in the dataset and form 

hypotheses based on our understanding of it. Running the input data through the algorithm to correlate 

the processed output with the sample output is how the model is trained. The model is modified based 

on the results of this association. The four models are compared. 

 

4 ML classification models - Individually, the Random Forest Classifier, Logistic Regression, 

XGBoost, and Support Vector Machines are assessed against four separate aspects of the EMSCAD 

dataset (Company profile, job description, benefits, and requirements). The cleaned dataset is split into 

separate training and testing datasets in such a way that the number of real and fraudulent jobs are 

balanced. The 5 models are then trained to differentiate and identify the nature of the jobs. The cleaned 

dataset is split into separate training and testing datasets in such a way that the number of real and 

fraudulent jobs are balanced. The 5 models are then trained to differentiate and identify the nature of 

the jobs. Finally, the Ensemble Model thus created is deployed and connected to a Flask application 

which is the interface the user will interact with and enter details which the model will analyze such 

as the company’s profile, the job description, benefits, and requirements.  
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FUTURE WORK 

 

This project can be further enhanced in the future by hosting the website in cloud and make it so that 

it redirects to the source of the job posting if the job posting is real. Another enhancement that could 

be done is that this entire application can be connected to cloud and can be added as an extension 

where, whenever the client looks at a job posting, the application can alert the user if the job posting 

is fake, or the user can manually run the application to find whether the job posting is fake or not. The 

application can also list the reasons why the job posting could be fake, and the fake percentage. With 

this, the user can easily determine why the job posting is fake and know the fake percentage. 
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